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Abstract. Survival or extinction of an endangered species is inherently stochastic. We
develop statistical methods for estimating quantities related to growth rates and extinction
probabilities from time series data on the abundance of a single population. The statistical
methods are based on a stochastic model of exponential growth arising from the biological
theory of age- or stage-structured populations. The model incorporates the so-called en-
vironmental type of stochastic fluctuations and yields a lognormal probability distribution
of population abundance. Calculation of maximum likelihood estimates of the two un-
known parameters in this model reduces to performing a simple linear regression. We
describe techniques for rigorously testing and evaluating whether the model fits a given
data set. Various growth- and extinction-related quantities are functions of the two param-
eters, including the continuous rate of increase, the finite rate of increase, the geometric
finite rate of increase, the probability of reaching a lower threshold population size, the
mean, median, and most likely time of attaining the threshold, and the projected population
size. Maximum likelihood estimates and minimum variance unbiased estimates of these
quantities are described in detail.

We provide example analyses of data on the Whooping Crane (Grus americana), grizzly
bear (Ursus arctos horribilis) in Yellowstone, Kirtland’s Warbler (Dendroica kirtlandii),
California Condor (Gymnogyps californianus), Puerto Rican Parrot (dmazona vittata),
Palila (Loxioides balleui), and Laysan Finch (Telespyza cantans). The model results indicate
a favorable outlook for the Whooping Crane, but long-term unfavorable prospects for the
Yellowstone grizzly bear population and for Kirtland’s Warbler. Results for the California
Condor, in a retrospective analysis, indicate a virtual emergency existed in 1980. The
analyses suggest that the Puerto Rican Parrot faces little risk of extinction from ordinary
environmental fluctuations, provided intensive management efforts continue. However,
the model does not account for the possibility of freak catastrophic events (hurricanes,
fires, etc.), which are likely the most severe source of risk to the Puerto Rican Parrot, as
shown by the recent decimation of this population by Hurricane Hugo. Model parameter
estimates for the Palila and the Laysan Finch have wide uncertainty due to the extreme
fluctuations in the population sizes of these species. In general, the model fits the example
data sets well. We conclude that the model, and the associated statistical methods, can be
useful for investigating various scientific and management questions concerning species
preservation.

Key words: California Condor; conservation biology; diffusion process; endangered species; ex-
ponential growth; extinction; grizzly bear; inverse Gaussian distribution; Kirtland’s Warbler, Laysan
Finch; lognormal distribution; Palila; parameter estimation; Puerto Rican Parrot; stochastic differential
equation; stochastic population model; Whooping Crane; Wiener process.

INTRODUCTION

The extinction of a population is a chance event. A
population’s growth inevitably displays stochastic fluc-
tuations due to numerous unpredictable causes. Con-
sequently, a species with an average negative growth
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rate might temporarily prosper, while a species with a
positive rate might become endangered. The field of
conservation biology has recognized the importance of
accounting for stochastic factors in species preserva-
tion efforts (Shaffer 1981, Samson et al. 1985, Soulé
1986, 1987, Burgman et al. 1988, Lande 1988, Sim-
berloff 1988). Such accounting in practice has proved
no easy task.
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Many mathematical models of population growth
incorporating stochastic fluctuations have been stud-
ied; Nisbet and Gurney (1982) and Goel and Richter-
Dyn (1974) provide excellent surveys. The chance of
extinction or waiting time to extinction is frequently
the focus of theoretical or numerical analyses of sto-
chastic growth models (Capocelli and Ricciardi 1974,
Richter-Dyn and Goel 1974, Feldman and Roughgar-
den 1975, Keiding 1975, Leigh 1981, Tier and Hanson
1981, Ginzburg et al. 1982, Braumann 1983¢, b, Wright
and Hubble 1983, Strebel 1985, Goodman 1987, Lande
1987, Iwasa and Mochizuki 1988, Lande and Orzack
1988, Dennis 1989a). Ginzburg et al. (1982), in par-
ticular, described the concepts of risk analysis as a
framework for such extinction studies. These studies
have tended to use relatively simple stochastic models
such as univariate birth—death processes or diffusion
processes, since the analyses are considerably easier as
compared to more complex models. Despite their ap-
parent lack of realism, these simple stochastic models
have yielded qualitative insights into general manage-
ment questions, such as the determination of mini-
mum viable population sizes, whether demographic,
genetic, or environmental fluctuations are more im-
portant to a species’ survival, whether single large or
several small reserves afford the least extinction risk,
and how Allee effects might be manifested in stochastic
populations (Leigh 1981, Wright and Hubbell 1983,
Wilcox 1986, Goodman 1987, Burgman et al. 1988,
Simberloff 1988, Burkey 1989, Dennis 1989a).

The usefulness of simple stochastic models, though,
seemingly diminishes for specific, real situations. First,
many endangered vertebrate populations are age struc-
tured and have periodic breeding seasons, so that mod-
els containing a single state variable and/or continuous
time would appear unrealistic and inappropriate for
quantitative predictions concerning particular species.
An alternate approach preferred by some investigators
has been the construction of detailed simulation mod-
els with many variables, parameters, and stochastic
components (e.g., Shaffer and Samson 1985, Mode and
Jacobson 1987a, b, Ferson et al. 1989). Second, sto-
chastic models are limited in practice by the quality
and quantity of data on the growth of endangered spe-
cies. In this regard, the improvements offered by de-
tailed simulation models over simple analytical models
can be dubious. It is a statistical fact of life that less
data allows estimation of fewer parameters, and it is
quite common for components (particularly stochastic
components) of simulation models to be set rather ar-
bitrarily. Finally, even in situations where good data
exist, it has not been at all clear to investigators how
to interface stochastic models (or deterministic ones,
for that matter) with data. Appropriate statistical meth-
ods for parameter estimation, model evaluation, and
hypothesis testing for stochastic growth models would
enhance our understanding of biological populations.

However, mathematical studies have suggested that
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simple stochastic models might serve as useful ap-
proximations for various quantities pertaining to age-
structured populations experiencing stochastic fluctu-
ations. Theoretical results concerning stochastic Leslie
matrices have indicated that, under very mild as-
sumptions, the logarithm of total population size in an
age-structured population can be approximated by a
simple stochastic process known as the Wiener process
(or Brownian motion) with drift (Tuljapurkar and Or-
zack 1980, Heyde and Cohen 1985, Tuljapurkar 1989).
This model represents a simple stochastic exponential
growth model for population size, and as such had
been proposed and analyzed in the population biology
literature (Capocelli and Ricciardi 1974). Most of its
statistical properties, like the distribution of the waiting
time until an upper or lower fixed size is attained, had
been derived decades earlier by physicists and math-
ematicians. Population biologists have realized that
these statistical properties might prove useful for ex-
tinction calculations (Capocelli and Ricciardi 1974,
Ginzburg et al. 1982, Braumann 19835, Levinton and
Ginzburg 1984, Lande and Orzack 1988). Lande and
Orzack (1988), in particular, recently emphasized the
potential importance of the Wiener-drift process as a
general approximation for age-structured populations,
and showed with computer simulations that the as-
sociated approximations for extinction-related quan-
tities can be quite acceptable.

Furthermore, statistical inference methods for sim-
ple stochastic processes are accumulating in the math-
ematical statistics literature (e.g., Basawa and Prakasa-
Rao 1980), and inference for the Wiener-drift process
has been developed in the specific context of popula-
tion biology. Braumann (198356) and Dennis (19895)
studied the question of how to fit this stochastic ex-
ponential growth model to data. To “fit” means to
estimate the two parameters (denoted u and o2 in this
paper) in the model in some statistically acceptable
manner, given data on some growing or declining pop-
ulation. Braumann (198356) derived maximum likeli-
hood (ML) estimates for time series data with obser-
vations spaced at equal intervals. Dennis (1989b)
generalized these estimates to unequally spaced inter-
vals and showed how the problem can be transformed
to a simple linear regression, making available the whole
battery of linear model diagnostics, tests, and software.

These combined developments now make possible
the estimation of quantities related to growth and ex-
tinction for a variety of endangered species, using rel-
atively straightforward statistical techniques. We de-
scribe the necessary techniques in this paper, and
provide illustrative analyses of data on the Whooping
Crane (Grus americana), grizzly bear (Ursus arctos hor-
ribilis), Kirtland’s Warbler (Dendroica kirtlandii), Cal-
ifornia Condor (Gymnogyps californianus), Puerto Ri-
can Parrot (dmazona vittata), Palila (Loxioides bailleui),
and Laysan Finch (Telespyza cantans). The quantities
estimated are functions of the two parameters in the
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stochastic exponential growth model and include the
continuous rate of increase, the finite rate of increase,
the probability of extinction, the mean time to extinc-
tion, and the projected population size. The model is
easy to use and fits the example data well. The statis-
tical methods discussed here for applying the model
are best used with true census data, or with population
estimates in situations where sampling variability is
small compared to population variability. We conclude
that the model, in conjunction with the statistical in-
ference methods described here, is a potentially valu-
able tool for addressing scientific and management
questions in conservation biology.

THE STOCHASTIC EXPONENTIAL
GROWTH MODEL

Projection matrix

The Lewis-Leslie model (Lewis 1942, Leslie 1945)
is a frequently used mathematical representation of
density-independent growth of an age-structured pop-
ulation observed at discrete time intervals. The model
can be written as

M(t + 1) = 4(t)m(2), (1)

where Mm(?) is a column vector containing elements rep-
resenting numbers of individuals (usually females) in
each age classat time ¢ (t =0, 1, 2, ...), and 4(¢) is a
square matrix containing age-specific fecundity rates
(top row), age-specific survivorship rates (subdiago-
nal), and zeros elsewhere (see van Groenendael et al.
1988 for a recent review). The model is easily gener-
alized to stage-structured populations by incorporating
additional positive elements into the projection matrix
A(t) (Lefkovitch 1965). If the elements in 4(f) are con-
stant, the total population size ultimately approaches
exponential growth or decline, after initial age- (or
stage-) structure imbalances damp out into a stable age
structure. The exponential growth is represented by

(2

where N(¢) is the total population size [summed ele-
ments of the vector m(t), n, = N(0) is the initial pop-
ulation size, and A is the dominant eigenvalue of the
projection matrix (finite rate of increase).

However, the elements of a realistic projection ma-
trix should fluctuate with time, since fecundity, sur-
vivorship, or stage transition rates are seldom constant
in nature. An alternative modeling approach is to as-
sume that the elements of 4(¢) change with time in the
form of a (multivariate) stationary time series. Tulja-
purkar (1989) has given a comprehensive review of the
demographic theory of populations governed by such
dynamics. This modeling assumption is mathemati-
cally broad enough to include many real situations and
is fundamental to the analysis methods we describe in
this paper. Note that this assumption excludes popu-
lations experiencing nonstationary fluctuations in de-

N(t) = no\,
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mographic rates, such as decreasing survival or repro-
duction rates due to diminishing habitat.

This stochastic formulation seems to have the min-
imum level of biological detail necessary for describing
a vertebrate population. By contrast, a deterministic,
single-state variable model such as Eq. 2 would not
likely provide much useful information concerning
survival or extinction of an endangered species.

A stochastic single-state variable model, though, can
adequately approximate the statistical properties of the
fluctuations in total population size resulting from the
stochastic projection matrix. Results of Tuljapurkar
and Orzack (1980) and Heyde and Cohen (1985), based
on central limit theorems, state that the quantity X(¢)
=log N(¢) will have, as t becomes large, an approximate
normal distribution with a mean of x, + ut and a
variance of ¢?¢ [written X(¢f) ~ normal(x, + ut, o%),
where “~*’ means “‘is distributed as,”” and the dot in-
dicates that the distribution is approximate], where x,
= log n,. The approximation can be improved by ad-
justing n, for initial age structure imbalances (see Lande
and Orzack 1988), but we confine ourselves in this
paper to estimation techniques that do not require de-
tailed knowledge of age structure. Here, u is a real-
valued constant, and ¢2 is a positive, real-valued con-
stant. These parameters depend on properties of the
underlying stochastic projection matrix. If the matrices
4(1), 4(2), . . ., are serially uncorrelated (for example,
each year or time period, elements of the projection
matrix are drawn from a multivariate distribution, in-
dependent of previous years), then

u = log A — (6%/2) A3

and

02 = \2%'co,

4

where A is now the dominant eigenvalue of the average
projection matrix 4*{= E[A(¢?)]}, c is the variance—co-
variance matrix of the multivariate distribution from
which the elements of 4(¢) arise, and é is a column
vector containing partial derivatives of A with respect
to each element of 4* (Tuljapurkar 19825b).

While estimating the multitudinous quantities in a
projection matrix with any useful degree of precision
can be exceedingly difficult, estimating x and o2 is pos-
sible with just a single time series of observations on
total population size. Furthermore, various quantities
related to extinction are functions of u and ¢2 and are
straightforwardly estimated.

Ease of estimation arises from the fact that the ap-
proximate normal distribution of X(¢) is identical to
the distribution of a Wiener process with drift (e.g.,
Goel and Richter-Dyn 1974). The Wiener-drift model
is a simple type of continuous-time, continuous-state,
Markov stochastic process known as a diffusion pro-
cess. Taking X(¢) to be a Wiener-drift process, strictly
speaking, imposes an additional layer of approxima-
tion on top of the results of Tuljapurkar and Orzack
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(1980) and Heyde and Cohen (1985), in that the Wie-
ner-drift process has the above-mentioned normal dis-
tribution for small values of ¢ as well as large. Lande
and Orzack (1988), though, showed with computer
simulations that extinction probabilities under various
hypothetical life histories were accurately predicted with
the Wiener-drift approximation, provided the fluctu-
ations in the projection matrix elements were small or
moderate. We discuss diagnostic procedures later in
this paper to evaluate the adequacy of the Wiener-drift
model for a given data set (see Model evaluation sec-
tion).

Diffusion approximation

We assume that the natural logarithm of total pop-
ulation size, X(¢) = log N(¢), is adequately approxi-
mated by a Wiener process with drift. This process has
been extensively studied; Goel and Richter-Dyn (1974),
Ricciardi (1977), and Karlin and Taylor (1981) provide
lucid expositions of it and other diffusion processes.
The constant u is known as the infinitesimal mean of
the process, since uAt is the (approximate) average
amount of change in the process over a tiny time in-
terval At. The constant o2 likewise is known as the
infinitesimal variance. The process has a transition
probability density function (pdf) corresponding to a
normal(x, + ut, ¢%t) distribution:

Pal(x, t|xo) = (2wo?t) exp[—(x — xo — wu)*/(26%1)],
-0 < x <o, (5)

The probability that X(¢) is between a and b at time ¢,
given that the process starts at x,, is the corresponding
area under the pdf. This probability can be evaluated
with the standard normal cumulative distribution
function (cdf), ®(-):

b
Prla < X(t) = b] = f PAX, t]x,) dx

_ <b - Xo — [.Lt>
ot
a Xo — Mt
- Y —
( N ) ©

where

P(z) = f (2m)~"exp(—y?*/2) dy. 7

The untransformed total population size, N(¢) =
exp[X(?)], is also a diffusion process. The transition pdf
for N(¢) is that of a lognormal distribution:

pu(n, tng)
= n~Y(c*t2m) "exp[—(log n — log n, — ut)*/(20%t)],
0<n<oo (8

The mean (or expected) population size, given that the
process starts at n,, is
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E[N(®)] = ¥(z; no, 1, 0?)

noexp{[u + (*/2)]t}. €))

For the case of serially uncorrelated projection matri-
ces, the mean population size is identical to the deter-
ministic exponential growth model (Eq. 2), with A given
by Eq. 3. The mean of X(¢) by contrast does not depend
on o2

E[X(0)] = v(; X0, W) = Xo + nt. (10)

The geometric mean of N(?) is defined by exp{E[X(#)]}:
(11

The geometric mean is also the median of the lognor-
mal transition pdf (Eq. 8), which is a general property
of the lognormal distribution (see Dennis and Patil
1988). Analytical (Tuljapurkar 1982a) and simulation
(Slade and Levenson 1982, Nordheim et al. 1989) stud-
ies suggest that the geometric mean of N(¢) better char-
acterizes the behavior of the process than does the
mean (Eq. 9), due to the extreme positive skewness of
the lognormal transition pdf. Other statistical prop-
erties of this process are catalogued by Dennis and Patil
(1988).

Any diffusion process in general has an alternate
mathematical representation as a stochastic differential
equation (SDE) (e.g., Karlin and Taylor 1981). Of par-
ticular interest here is that the process N(¢) is the so-
lution to an SDE version of the exponential growth
model given by

exp{E[log N@)]} = B(¢; no, u) = neexp(us).

dN(t) = rN(t) dt + oN(t) dW(2), (12)

where r is a real-valued constant and dW(t) ~ nor-
mal(0, dt). The differential dN(¢) is defined mathe-
matically in terms of an Ito stochastic integral (for
example, Soong 1973); the constants u and ¢? in the
transition pdf (Eq. 8) for N(¢) are related to r by

=p + (6%/2). (13)

For the case of serially uncorrelated projection matrices
(see Eq. 3), r = log A.

Previous studies of extinction probabilities (Capo-
celli and Ricciardi 1974) and parameter estimation
(Braumann 19835b) for the exponential growth SDE
(Eq. 12) used a Stratonovich stochastic integral to de-
fine dN(¢); those results should not be used if the dif-
fusion process N(¢) is intended as an approximation
for an underlying age-structured, discrete-time system.
The Stratonovich formulation instead more appropri-
ately represents a system in which the state variable is
fundamentally a continuous function of time (e.g., bio-
mass). Turelli (1977), Capocelli and Ricciardi (1979),
and Braumann (1983a) provide insights into the two
ways of interpreting the SDE (Eq. 12) as an approxi-
mation for some underlying process, and Dennis and
Patil (1988) list formulas for transforming Ito-based
results to Stratonovich-based results and vice versa.
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Extinction properties

Under the continuing unpredictable fluctuations of
the Wiener-drift model, X(¢) could possibly cross any
lower threshold size, x,, starting from x,. This event
corresponds to the population size, N(¢), attaining a
lower threshold size, n, = exp(x,), starting from n,. If
n, = 1 (or x, = 0), the event obviously represents the
extinction of a closed, sexually reproducing population.
Management efforts to promote survival of an endan-
gered species might naturally hinge upon a different
threshold size. Some fixed population size, n, > 1,
could be regarded as a policy threshold, or as a safety
cushion to avoid the possibilities of Allee effects (e.g.,
Dennis 1989a), skewed sex ratios, or inbreeding. We
use the term ““extinction” in this paper to refer broadly
to the attainment of some prespecified lower threshold,
representing, if not the demise of the species, the de-
mise of some management regime. The term ““quasiex-
tinction” has also been used in this context (Ginzburg
et al. 1982). Let x, represent the distance on the log-
arithmic scale from an initial population size to a lower
threshold population size:

X; = Xo — X, = log(ny/n,).

(14)

As explained in the context of extinction by numerous
authors (Capocelli and Ricciardi 1974, Ricciardi 1977,
Tuljapurkar and Orzack 1980, Ginzburg et al. 1982,
Lande and Orzack 1988), the probability =(x,, p, 0?)
that the process will ever attain the threshold is

ILu=0;

exp(—2ux,/a%), u > 0. (15

m(Xa W, 07) = {
Given that the threshold is attained (i.e., condition-
ing on all sample paths of the process that reach the
threshold), the amount of time, 7, elapsing before the
threshold is first reached is a positive, real-valued ran-
dom variable with a continuous probability distribu-
tion. The cdf of the distribution can be written in terms
of a standard normal cdf:

Pr[T = 1] = G(t; x4 1, 07)

—xg + |u|z)

==L "

( oVt

—x, + |#|t>

+ exp(2x, /6P| ————),
p(2x,|p|/c?) ( Ry

0<t<oo (16)

The pdf of the distribution is the derivative of G(f; x,,
u, o) with respect to ¢:

g(t9 Xa> Ky 02)

= x/2m0?t*) exp[—(x, — |r|0)*/(26*0). (17)

This distribution, known as the inverse Gaussian dis-
tribution (a misnomer: it is not the distribution of the
reciprocal of a normal random variable), has been ex-
tensively studied (see Folks and Chhikara 1978).
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Yellowstone Grizzly Bear
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Fic. 1. Probability density function (PDF) of the inverse

Gaussian distribution, plotted using maximum likelihood es-
timates of parameters u and o2 for the Yellowstone National
Park population of grizzly bears. The distribution is that of
the time required for 47 female bears to decline to 10 bears.

Schrédinger (1915) originally obtained it as the first-
passage time distribution for the Wiener-drift process
for the case u < 0; Tweedie (1957a, b) derived many
of its statistical properties. Whitmore (1978) obtained
the inverse Gaussian explicitly as the conditional first-
passage time distribution for the case 4 > 0. Whitmore
and Seshadri (1987) and Lande and Orzack (1988) have
given intuitive derivations of the first-passage time re-
sult.

We note that the probability distribution of the time
to attain an upper threshold, given it is attained, is also
the inverse Gaussian distribution (Eqgs. 16 and 17),
except with x, representing log(n,/n,), where n, is the
upper threshold. The probability of ever attaining 7,
is given by w(x,;, —u, ¢?), that is, by (Eq. 15) evaluated
at log(n,/n,), —u, and o>.

Various quantities pertaining to this distribution are
of potential interest in conservation biology. The mean
time until the threshold population size is reached is
the expected value of T~

E[T] = 0(x,, w) = x/|1|. (18)
The variance of T is
Var(T) = x,0% |p|3. (19)

The distribution is positively skewed and has a heavy
right tail (an example shape is portrayed in Fig. 1), a
fact that has implications for species preservation ef-
forts (see Examples and Discussion sections). Percen-
tiles and modes are quantities that help to characterize
such skewed distributions. The 100:-pth percentile,
£,(x4 1, 0?), is defined as the root of

G(&,; Xa» u, 0%) = p. (20)
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For example, the 50th percentile of the distribution,
or the median, represents the fixed time at which the
probability of hitting the threshold before that time is
0.5. The mode of the distribution is the most likely
time of hitting the threshold, and is defined as the value
of t maximizing the pdf (Eq. 17):

V2
. 2y = Xa 2) 3
t (xzh ”,U) |ll~| l:(l + 4V2 21/ > (21)

where v = x,|u|/g2. Note that the mode is the product
ofthe mean and a quantity (in square brackets) between
0 and 1.

The notation used above emphasizes that these
quantities are functions of the parameters x,, u, and
2. The quantity x,, the (log-scale) distance to the
threshold population, is selected by the investigator.
The parameters u and o2, however, are typically un-
known and must be estimated from data.

PARAMETER ESTIMATION
Maximum likelihood estimates

Estimates of 1 and ¢2 can be obtained by observing
a population at times O, ¢,, ¢,, ..., f,. The recorded
observations of population size will be denoted n(0) =
ne, n(t,) = n,, ..., n(t,) = n,, and the time intervals
(not necessarily equal) between observations denoted
t, - 0=71,t,—t, =7y ..., t,— t,, =71, Fora
population with a yearly breeding cycle, these obser-
vations should be spaced at least 1 yr apart and taken
at the same time of year. A recommended way of fitting
the stochastic exponential growth model to such data
is maximum likelihood (ML) estimation.

ML estimates of the two parameters are easy to cal-
culate and have many desirable statistical properties.
The likelihood function /(u, ¢?) is defined as the joint
pdf for N(¢,), N(t,), . .., N(t,), given N(0) = n,, eval-
uated at the observations 7n,, n,, . . . , n,. To obtain the
likelihood function, we note that N(¢) is a diffusion
process with stationary transition probabilities. This
means that the pdf of », given n;,_, depends on 7, (the
time interval since #,_,) but not on ¢,_,. Also, the dif-
fusion process is a Markov process, meaning that the
pdf of n, given n,_, does not depend on the earlier
observations n,, . . ., n,_,. Thus, py(n,, 7,|n,_,), which
is the lognormal transition pdf (Eq. 8) evaluated at »,,
7, and n,_,, represents the likelihood of the system
moving to »; from #n,_, in a time interval of 7,. The
likelihood function is then the product of transition
pdfs:

Uy, 0%

= pMny, 7| no)pa(ny, 72| 0y) PRy, 7, | n,_y). (22)
The ML estimates, 4 and 62, are the parameter values
jointly maximizing /(u, ¢2) or, equivalently log /(u, ¢2),
where
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log i(u, 62 = — 2 log[n,(27,m)"]

i=1

— (g/2)log 0% — [1/(20%)]

Zq: (I/r)llog(ni/n.) — pri]®. (23)

It is straightforward to set partial derivatives of log
I(u,0%) with respect to p and o2 equal to zero and solve
for the ML estimates:

u= lié IOg(ni/ni—l)] i Ti

~ Hog(n,/mo)Vt,: 4)

o> = (1/q) i (1/7)llog(n/n,-) — w7 . (25)

i=1

We mention that the ML estimate (Eq. 25) of o2 is
biased (e.g., Dennis 19895); an unbiased estimate is

a?/(q — 1). (26)

The difference between 6> and 62 is negligible when g
is large. Often g will not be very large in data on en-
dangered populations, though.

52 =

Linear regression approach

These identical ML estimates of u and o2 can also
be calculated by a regression approach. This approach
offers the following practical advantages. First, infor-
mation about the statistical distributions of the ML
estimates is easily obtained (e.g., confidence intervals).
Second, a battery of diagnostic procedures for linear
regression models becomes available for evaluating the
diffusion model. Finally, the analyses can be accom-
plished with most of the standard computer packages
for linear regression.

The approach involves transforming the observa-
tions so that a normal linear model applies. Let W, =
log[N(t,)/N(t;_ )] = X(t)) — X(t;_,), so that W, represents
the change in X(¢) (the Wiener-drift process) between
times ¢,_, and ¢,. Thus, the variables W, W,, ..., W,
are increments of a Wiener-drift process, and are there-
fore normal, independent, and stationary (e.g., Ric-
ciardi 1977). In fact, if w=[W,, W,, ..., W/)]'and 7
= [1), 75, ..., 7,]’ are defined as column vectors, the
distribution of w becomes a multivariate normal, with
mean ur and variance—covariance matrix o2v:

w ~ normal(ur, o?»). 27)

Here v = diag(r) is a matrix with the elements of 7 on
the main diagonal and zeros elsewhere. Let ¢ = diag
V7, ..., \V/1,), that is, ¥ = ¢'G. A transformation of
w produces an ordinary normal linear model (e.g.,
Graybill 1976:207):

Y = G~ 'w ~ normal(up, ¢%I1),

where b = [\/7,, . .

(28)
.»\V/7,]' and 1is the g x g identity
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matrix. This is a model for a simple linear regression
without intercept.

In practice, the data are transformed by y; = [log(n/
n,_)/\/7,i=1,...,q The regression approach uses
V1> Va» - - - » ¥, as values of the “dependent variable,”
V71, ..., \V7,as values of the “independent variable,”
and a linear regression without intercept is performed.
The formula (Eq. 24) for i is recognized as the slope
parameter estimate, and > (Eq. 26) is the (unbiased)
estimate of the error variance parameter. The ML es-
timate of ¢2 is 62 (Eq. 25).

The usual linear model theory yields the distribu-
tions of fi, 62, and &% (Graybill 1976):

(29
(30)

Also, fi is independent of 62 or 2. An estimate of the
standard error of f is (62/¢,)", and a 100(1 — «)% con-
fidence interval for u is given by

B = laag- 1NV 1ty b+ typ 1 V).  (31)

Here Pr[|T,_,| =< t.,,,.:11 =1 — a, where T,_, has a
Student’s ¢ distribution with ¢ — 1 degrees of freedom.
Confidence intervals for ¢> can be calculated with
either the ML or the unbiased estimate. For example,
a 100(1 — a)% confidence interval for o2 based on the
ML estimate is

i ~ normal(u, 0%/t,),
q62/0* = (@ — 1)6*/g* ~ chi-square(g — 1).

(32

where a;, + a, = a, 0 < ay, a,, and Pr[X,_, = x2,,.1]
=1 — a, where X,_, has a chi-square distribution with
g — 1 degrees of freedom. The confidence interval using
the unbiased estimate would simply substitute (g —
1)62 for go2 in Eq. 32.

(@5 X015 G5/X 1 a0

MOoODEL EVALUATION

The equivalence of the Wiener-drift model for X(¢)
and the linear regression model for the transformed
increment variables v (see Eq. 28) is extremely useful
for assessing the adequacy of the diffusion approxi-
mation. Numerous diagnostic procedures are available
for evaluating the adequacy of linear models; Chatter-
jee and Hadi (1988), Cook and Weisburg (1982), Bels-
ley et al. (1980), and Draper and Smith (1981) are
excellent references. Furthermore, changes in the Wie-
ner-drift model, before and after a fixed time, can be
detected using regression methods. The relevance of
these procedures to evaluating the diffusion model is
discussed.

Evaluation of model assumptions

Our assumption of a Wiener-drift model for X(¢)
corresponds to the following regression model for the

transformed increment data (from Eq. 28):
Y=uD + ¢ (33)

where the ¢ X 1 vector of errors € = (¢, €, . . ., €)’;
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the errors are assumed to be independent normal ran-
dom variables with common mean O and variance o2.
Thus, a violation of the diffusion model assumptions
can be detected by evaluating the assumptions of the
regression analysis.

Notice that the transition is the fundamental obser-
vation in the likelihood function (Eq. 22); the popu-
lation observations n,, n,, ..., n, appear only in the
context of transitions from one to the next.

Graphical and analytical methods for checking the
regression model assumptions are invariably based on
the residuals or transformations of the residuals, where
the jth residual is the difference between the jth ob-
servation and its predicted value: e, = y, — ;1\/17, (e.g.,
Draper and Smith 1981, Cook and Weisburg 1982).
Although the residuals are subject to some restrictions
(e.g., correlations among the ¢; may be nonzero), they
can be loosely interpreted as the observed errors if the
model is correct. Hence, they should exhibit behaviors
that tend to confirm the model assumptions or at least
that do not contradict these assumptions (Draper and
Smith 1981).

Residuals can be used to check the independent in-
crements property, an assumption imposed on X(¢) via
the Wiener-drift approximation. This assumption is
crucial to the analyses presented here. If the assump-
tion is reasonable, then serial autocorrelations among
the increment variables W, (see Eq. 27) are negligible
and hence the limiting distributional results of Tulja-
purkar and Orzack (1980) and Heyde and Cohen (1985)
can be applied to the transitions; that is, the W, are
approximately independent normal random variables.
Correlations among the transitions suggest that the
Wiener-drift process for X(¢) is inappropriate. In this
case, while the least squares estimates of ¢ and ¢? are
statistically consistent (i.e., the estimates get ‘“‘closer”
to the true parameter values as the sample size increas-
es), they may not be the best estimates. We refer to
Heyde and Cohen (1985) for more appropriate esti-
mators when the errors are correlated.

We note that even with serially uncorrelated envi-
ronmental fluctuations, the W), in most age-structured
populations have a theoretical serial correlation. The
cause of this correlation is the time lag inherent in age-
structured survival and reproduction; a big pulse of
reproduction, for instance, leads to another pulse some
years later when the ‘““baby boom” reaches reproduc-
tive maturity. The theoretical Wiener-drift approxi-
mation strictly applies only for time intervals encom-
passing many generations. Use of a Wiener-drift
likelihood (Eq. 27) to model the W, will result, in the
case of serially uncorrelated environmental fluctua-
tions, in an underestimate of the infinitesimal variance
of the theoretical Wiener-drift approximation.

There is as yet no entirely satisfactory way to correct
for this bias with a single time series, without additional
knowledge of age-specific demographic parameters.
Methods discussed by Heyde and Cohen (1985) and
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Lande and Orzack (1988) involve estimating high or-
der autocovariances or pooling transitions into a few
long-term transitions, with the price of high standard
errors for the estimates of ¢2. The situation warrants
further investigation. In the meantime, use of the Wie-
ner-drift model for a population time series should rely
heavily on diagnostic techniques, such as discussed
here, in order to minimize potential bias.

A popular test for detecting first-order autocorrela-
tion among the errors of a regression model is the
Durbin-Watson test. The test statistic for testing the
null hypothesis of uncorrelated errors is

q q
d=2 (= ¢.)/ 2 e
j=2 j=1

Draper and Smith (1981) provide tables of upper and
lower critical values of d for a number of significance
levels. This test is available in many statistical com-
puting packages and therefore can be easily incorpo-
rated in the analysis. Higher order autocorrelations can
be detected by subjecting the residuals to standard time-
series analyses (e.g., Pankratz 1983), provided enough
data are available.

Other analytical, as well as graphical methods are
available for checking the remaining model assump-
tions (e.g., normality, constant variance) and we refer
the reader to Draper and Smith (1981) and Cook and
Weisburg (1982) for a discussion of these standard pro-
cedures. It is worth noting that if the population ob-
servations n,, n,, ..., n, are taken at equally spaced
time points, so that the 7, are equal, many of these
graphical methods are uninformative.

(34)

Sensitivity analysis

In recent years, numerous statistical measures have
been developed for detecting unusual (e.g., outliers) or
highly influential observations (Belsley et al. 1980,
Chatterjee and Hadi 1988). As pointed out by Belsley
etal. (1980:3), such transitions are not necessarily “bad”
data points; rather, they may contain some of the most
interesting sample information. However, they may
also reflect an unknown recording error or they may
have resulted from circumstances different from those
common to the remaining data (e.g., a population re-
duction due to an unusual catastrophic storm or re-
moval of population members into captivity by man-
agers). Since these observations can have a substantial
effect on the parameter estimates (that is, the estimates
are extremely sensitive to them), we recommend
screening for them in the analysis; many statistical soft-
ware packages will calculate these measures.

An observation is an outlier if it is not successfully
accommodated by the fitted regression model. Resid-
uals or transformed residuals corresponding to outliers
are large compared to those of other observations in
the data set. However, a small residual does not nec-
essarily imply that the corresponding observation is a
typical one; the method of least squares avoids large
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residuals in fitting the model and thus may accom-
modate an atypical transition at the expense of the
other data points. These transitions are commonly re-
ferred to as influential observations since they exces-
sively influence the parameter estimates as compared
to the remaining data. Note that a transition may be
judged as an outlier, an influential observation, or both.

Outliers are identified via statistical measures based
on residuals and can be detected using formal testing
procedures or informal comparisons of relative mag-
nitude. One measure, which Chatterjee and Hadi (1988:
74) call the internally studentized residual, is the jth
residual divided by its estimated standard deviation:

e

] =—
TOVE( — by (33)

where h; = 7,/t,is the jth diagonal element of the matrix
D(D'D) '’ (see Eq. 28). While the /;are notindependent
(since the residuals are not independent), a formal test
is available for detecting the presence of a single outlier.
If 1., denotes the maximum of the values of | I,|, then
approximate critical values for I,,,, at the « signifi-
cance level, are given by

e =\ /Y= Dwarar.
: q—2 +ﬁ/q,1,q—1 ’
where f,,,, ,-, is the 100[1 — (a/g)]th percentile of an
F distribution with 1 and ¢ — 1 degrees of freedom.
Thus, at the « level of significance, I, is an outlier if
I > Co
The externally studentized residual (Chatterjee and
Hadi 1988:74) is defined as

(36)

Eym ot (37)
Va2, (1 — hy))

where 2, is the (unbiased) estimate of ¢ when the jth
transition is deleted from the analysis (see Eq. 42 be-
low). This measure for detecting outliers has some ad-
vantages over I,. By excluding the jth transition in
estimating o2, 6%, ignores gross errors in the jth ob-
servation. Also, E, tends to reflect large deviations more
dramatically than /.. In addition, E; has a Student’s ¢
distribution with g — 2 degrees of freedom, which sug-
gests that a transition for which [E;| > 2 and E, is
large in magnitude compared to those of the remaining
transitions should be investigated as a possible outlier.
Measures for detecting influential observations are
commonly based on the omission approach, in that
they measure changes in the parameter estimates or
predicted values when the jth data point is excluded
from the analysis. Cook’s distance, C; (Chatterjee and
Hadi 1988:117), measures the change in the slope es-
timate, {i, and can be expressed as a function of the

internally studentized residual:

C, = I2hy/(1 — hy). (38)
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Large values of C, indicate that the jth transition is
influential. Although C;isnot a true Frandom variable,
comparing C; to the probability points of an F distri-
bution with 1 and g — 1 degrees of freedom provides
descriptive or qualitative levels of significance (Chat-
terjee and Hadi 1988).

Welsch and Kuh’s distance, WK;, or the DFFITS;
statistic (Chatterjee and Hadi 1988:120), measures the
influence of the jth observation on the predicted value

AV

hj/
= (39)

g

WK, = |E|

Again, a large value of this statistic indicates a poten-
tially influential transition. While WK, does not have
a Student’s ¢ distribution with g — 2 degrees of freedom,
it is a z-like statistic. This suggests that data points for
which WK, > 2 should be regarded as influential ob-
servations.

In some regression studies 4, alone is used as an
influence measure. A point is considered influential if
h;; exceeds some specified constant. We point out that
this approach leads to some peculiarities for regression
through the origin. Since 4, = 7,/¢,, only transitions
with longer time intervals can be influential, but never
shorter time intervals. The other influence measures
discussed in this subsection depend on the y; values as
well as the #,; values and hence avoid this undesirable
property.

Once unusual or highly influential transitions have
been identified, they must be investigated to determine
if they are in error or the result of some catastrophic
event. If so, we recommend deleting them from the
analysis. When the jth transition is deleted, the like-
lihood function (Eq. 22) has the corresponding tran-
sition pdf excluded from the product, and the log-like-
lihood (Eq. 23) has the jth term excluded from the
sum. Egs. 24 and 25 for the ML estimates then become
altered to account for the missing transition:

w= {,é] log(n,/n,_.)}/{é T,};

i#*j i*j

a2 = (1/p) 2‘1: (1/7)[log(n,/n,_)) — pr)>.  (41)

i=1
i*)

(40)

Here p is the number of transitions included in the
estimates (= ¢ — 1 when just one transition is deleted).
Additional transitions can be deleted from the for-
mulas in the same way. If transitions are deleted from
the ML estimate of ¢2, then the unbiased estimate is

2 = pe*/(p — 1). 42)

Note that 62 = 62, if the jth observation alone is ex-
cluded. The estimates, i and 62 can easily be obtained
by omitting the appropriate pairs (3, \/7;) from the
regression analysis. With transitions deleted, the dis-
tribution Egs. 29-32 for the parameter estimates would
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have 27, in place of 7,, where the sum is over all tran-
sitions included in the analysis, and p in place of q.

Change in parameters

A permanent change in the infinitesimal mean growth
rate may result from a sustained change in the popu-
lation’s environment or from a change in conservation
efforts on the part of managers. Suppose the change in
conditions is known to have occurred after the jth tran-
sition. A corresponding change in u (without a change
in ¢2) is incorporated in the diffusion model by ex-

panding the regression model (Eq. 33):
Y =Du + ¢, 43)

where u = (u,, u,)’ and p is a ¢ X 2 matrix with first

column (\/7,, ..., V7,0, ...,0) and second column
©,...,0,V7,,1,...,\/7,). Thus, &, denotes the slope

parameter for the first j observations while the re-
maining g — j transitions have slope u,. As before, €
is the ¢ X 1 vector of normal random variables, with
mean 0 and common variance ¢2. The ML estimates
of u, and u, are

;
i, = [log(n/ny)l/ 2 7., (44)
i=1
q
i, = [log(n,/n)/ 2 7., (45)
i=j+1
with distributions
J
fi, ~ normal{ u,, 0/ T,>, (46)
and !
q
fir ~ normal(uz, o/ 2 T,.>. (47)
i=j+1

The unbiased estimate of ¢2 is
2= (1/(qg — 2))

{jZ (1/7)[log(n/n,_) — iy,

i=1

+ é (1/7)llog(n/n;-,) — ﬁzf,lz}, (48)

i=j+1

while the ML estimate is

62 = (g — 2)6%/q. (49)

Also,
qd?/c? = (q — 2)6%*/6* ~ chi-square(q — 2). (50)

Hence, confidence intervals for the model parameters
can be readily obtained (e.g., see Eqgs. 31 and 32).

A formal test is available for testing whether the
change in the infinitesimal growth rate is significant.
The statistic

Ty = (1 — )NV + /g — )]

(D
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has a Student’s ¢ distribution with ¢ — 2 degrees of
freedom, under the null hypothesis that 4, — u, = 0.
Note that Eq. 51 is simply the two-sample ¢ statistic
(e.g., Neter et al. 1985:13).

A sustained alteration in a population’s environment
or management policies may also result in a permanent
change in the infinitesimal variance. The model (Eq.
43) can be used to include a change in o2 after the jth
transition by assuming that the first j errors in € are
normal random variables with common mean 0 and
variance ¢,2> while the remaining g — j errors are also
normal with mean O but have common variance o,2.
In practice, this amounts to fitting two regression mod-
els, one to the first j transitions and another to the
remaining data. Allowing a corresponding change in
the mean provides the best estimates of the variance
parameters, since the least squares estimate of o2 de-
pends on u (see Egs. 52 and 53). The ML estimates of
i, and i, are Eqs. 44 and 45. Their distributions are
Egs. 46 and 47, respectively, except with separate vari-
ance ¢,2 and 7,2 substituted in place of ¢2. The unbiased
estimates of the variances are

¢2=[1/G — 1] 12 (1/7)

i=1

‘[log(n,/n;,_\) — g,7]% (52)
6> =[1/(g —Jj— D] iﬂ (1/7)
“[log(n/n;-,) — ﬁlzf,-]z, (53)
with independent distributions
(G — 1)3,2/6,2 ~ chi-square(j — 1), (54)
(@ — j — 1)6,%/0,%> ~ chi-square(g — j — 1). (55)

Since the chi-square random variables Egs. 54 and 55
are independent, the ratio of the estimated variances
given by

F,

j—lg-j-1 — 0,%/6,% (56)
has an F distribution with j — 1 and g — j — 1 degrees
of freedom, under the null hypothesis that 7,2 = 07,2

(e.g., Neter et al. 1985:7).

ESTIMATING GROWTH PARAMETERS
Continuous rate of increase

We define the continuous rate of increase as the pa-
rameter r in the exponential growth SDE (Eq. 12). By
adopting this definition, we abandon the notion that
there is anything “intrinsic’’ about a deterministic for-
mulation of exponential growth. Rather, r is simply a
constant related to statistical properties of the sto-
chastic process N(¢). Specifically, rn represents the in-
finitesimal mean of N(¢), that is, rnAt is approximately
the average amount of change in N(¢) over a tiny time
interval Az, given that N(¢) = n. The advantage of this
definition becomes apparent when r must be estimated
from time series observations.

BRIAN DENNIS ET AL.

Ecological Monographs
Vol. 61, No. 2

Any parameter in a deterministic model can only be
sensibly estimated from time series data by embedding
the model in a statistical/stochastic framework, that is,
by converting the model into a stochastic one. The
parameter r in the deterministic growth equation N(¢)
= nye” is often estimated by linear or nonlinear least
squares, with observations on population size serving
as the “dependent variable,” and observations on time
as the “independent variable.” The quality of such an
estimate, however, depends upon: (a) an assumed sta-
tistical model of errors in the regression, and (b) wheth-
er that error model adequately represents how the data
arise. The usual regression package printouts of con-
fidence intervals for r based on least squares calcula-
tions assume independent, normal errors. This amounts
to no more than fitting a stochastic growth model to
the data, and a bad one at that, since the observations
in a population time series are seldom independent.

Instead, the exponential growth SDE (Eq. 12) pro-
vides at the outset an explicit, realistic structure of
dependence in observations of a population’s size
through time. Under the exponential growth SDE, log-
scale increments of population size are independent,
but the population’s actual sizes are not. This depen-
dence structure is directly incorporated into parameter
estimates through the likelihood function (Eq. 22). If
the model is an acceptable representation of the system
(as evaluated by the diagnostic procedures described
in the Model evaluation section, above), then the pa-
rameter r as defined here can be efficiently estimated
from data.

The quantity r is a function, given by Eq. 13, of the
parameters u and ¢2. Substituting the ML estimates of
u and ¢ in Eq. 13 produces the ML estimate of r:

F= 0+ (6%2). 57)
The ML estimate is biased due to the bias of 62, though
the bias becomes negligible when ¢ is large. An unbi-
ased estimate of r results from using 2 instead of ¢

F=a+ (6%2). (58)

Since £ and 62 are “sufficient statistics” (all information
in the data about u and o2 is contained in g4 and 62?), a
fundamental result in statistics known as the Rao-
Blackwell theorem applies (see Rice 1988:261): 7is the
uniformly minimum variance unbiased (UMVU) es-
timate of r. In other words, no other unbiased estimate
of r has a smaller variance. Curiously, 7 has a smaller
variance than 7, due to the well-known fact that 62 has
a smaller variance than 2. Though 7 will be, on the
average, ‘“‘closer” to r than 7, it will tend to underes-
timate r.

The variance of 7 is just the sum of the variances of
i and 62/2, since i and 62 are independent:

Var(f) = Var(a) + Var(6%/2)

= (o%/t,) + {a¥/[2(g— D]}. (59)
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The distribution of 7 is complicated; it is the sum of a
normal-distributed random variable, i, and a gamma-
distributed (=constant-chi-square) random variable,
2/2. However, the distribution is fairly well approxi-
mated by a normal distribution for moderately large
values of g (say, 20 or so):

F~ normallr, — + ———).
tq 2((1 - 1)

An approximate 100(1 — «)% confidence interval for
r is thus given by

Ftz Al &
x ol — P EEE— .
/2 1, 29 - 1)

Here z,,, is the 100[1 — (a/2)]th percentile of the stan-
dard normal distribution.

We point out that the symbol rin Braumann’s (19835)
paper on estimation corresponds to the exponential
growth SDE (Eq. 12) as defined by the Stratonovich
stochastic integral. Braumann noted that the ML es-
timate of r he derived does not depend on g (the num-
ber of observations), but just on #, (the amount of time
the system has been observed). In fact, under the Stra-
tonovich interpretation of the SDE (Eq. 12), r equals
u (the infinitesimal mean of the log-scaled process),
and the infinitesimal mean of N(¢) is r + (¢%/2). In this
case, the ML estimate of r is given by Eq. 24 for the
ML estimate of u.

The fundamental discrete-time nature of population
growth for many vertebrate species (e.g., seasonal
breeding periods), coupled with the limit theorems on
stochastic projection matrices (Tuljapurkar and Or-
zack 1980, Heyde and Cohen 1985), suggests instead
that the Ito interpretation of the SDE (Eq. 12) be used
in typical endangered species contexts. Estimates of r
(Egs. 57 and 58) then become strongly dependent on
g as well as ¢,. Braumann (1983a) rightly observed that
the differing definitions of the SDE (Eq. 12) produce
semantic differences in how r is viewed as a central
tendency measure. Under the Stratonovich calculus r
is the rate constant in the geometric mean (Eq. 11) of
N(t), while under the Ito calculus r is the rate constant
in the mean (Eq. 9) of N(¢). The mean of a lognormal
random variable reflects the skewness of the distri-
bution. The small but real possibility of large values
of N(¢) has a strong upward influence on the mean, and
so the lognormal shape parameter ¢2 appears in Eq. 9
for the mean. The estimates of r presented here (Egs.
57 and 58) thus depend on the information available
for estimating o2 (i.e., g) as well as u (i.e., t,).

(60)

(61)

Finite rate of increase

We define the finite rate of increase, denoted A, as
follows:

A = exp(r) = Y(1; ny, u, 62)/n,

= explu + (6%/2)]. (62)
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It is the mean population size after 1 yr (Eq. 9) divided
by the initial size. The quantity approximates the dom-
inant eigenvalue of the average projection matrix of
the population, when the stochastic projection matrices
are serially uncorrelated (see Eq. 3). More generally, A
is simply a positive constant appearing when the SDE
(Eq. 12) is rewritten in discretized form as a stochastic
difference equation:

N + 1) =ANQ)L, (63)

where L is a lognormal random variable with a mean
of 1 and a shape parameter o2 (i.e., log L ~ nor-
mal[—(0?/2), ¢2]). The distributions of N(¢) in Egs. 12
and 63 coincide for integer values of . A more de-
scriptive term for A might be the ‘“discrete rate of in-
crease,” but the above term is widely used in the con-
text of deterministic growth models.

The ML estimate of A is obtained from the definition
(Eq. 62) using the ML estimates of u and ¢

A = exp(F) = exp[a + (6%/2)]. (64)

An alternate estimate uses the unbiased 7 instead of 7:
exp(7). Both of these are biased estimates of A, though
the bias disappears as g and ¢, become large. The bias
can be eliminated with a little programming effort.
Shimizu and Iwase (1981; see also Shimizu 1988) stud-
ied estimation of functions in the form exp(au + bo?),
where a and b are constants. With the help of their
results, we find that the following expression gives the
UMVU estimate of A:
)

Here F,(v; z) is the ‘“‘zero-F-one” hypergeometric
function, an easily computed infinite series:

o . g—1 g—1
A = exp(g)oF 1< ;

T (©3)

>
oF\(v; 2) E Tk
where (v), denotes v(v + 1) ... (v + j — 1), with (v), =
1. Successive terms in the series are handily calculated
with a recurrence relation: writing Q, = Z/[(v),(j!)], we
see that Q,,, = Qz/[(v + j)(j + 1)] and Q, = 1. The
terms rapidly become small, and the sum can be trun-
cated when adding more terms produces negligible
change.

Additionally, Shimizu and Iwase’s (1981) results al-
low us to obtain the variance of A:

Var(h) = A2[‘,,,(1,(0_2),71(«z_—_l; (g -1y > . 1]_
q 2 44
(67)

(66)

The distribution of A will converge to a normal[A,
Var(X)] distribution as g and ¢, become large. Estimates
of 1 and ¢2 can be substituted into the variance formula
(Eq. 67) for constructing confidence intervals of the
form {\ =+ za,z[\fz;r(f\)]‘/’}. However, the distribution of
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X is skewed, and convergence to normality might be
slow. The situation should be studied further with com-
puter simulations. In the interim, we recommend in-
stead the use of the approximate normal distribution
of 7 for constructing approximate 100(1 — a)% confi-

dence intervals for A:
1 G2
F+ 7l — + ———— |t ). 68
(e"p{’ "Lq 2(q~1>]}> ©9)

Mean population size

The mean population size given by Eq. 9 represents
the expected value of N(¢) at a time ¢. This quantity is
also a function of the unknown parameters u and o2,
and its ML estimate becomes

¥ = Wt; no, i, §7) = noexp(ft) = no\’

= ny exp{[a + (6%/2)]¢t}. (69)

As usual, the ML estimate retains a small-sample bias,
as does the estimate defined using 7 instead of 7. But
the function is in the form constant-exp(au + bo?), and
Shimizu and Iwase’s (1981) results can be applied di-
rectly to obtain the UMVU estimate of the mean pop-
ulation size:

¥= noexp(ﬁz)oFl(%; @ a> (70)

The variance of this estimate is found to be

Var(gﬁ) = ny2exp(2ut + o?t)

t?c? g—1 r(g—1 |, _
-[CXD<7>0F1<T ; —4q2 o > 1].
1

We note that Eqs. 70 and 71 reduce to 65 and 67 when
t = 1 (except for the constant term, »n,). Approximate
interval estimates of Y(¢; n,, u, 02) can be constructed
from the fact that the distribution of { converges to a
normal[Y(t; ny, u, 02), Var(y)] distribution. But again,
the quality of the distribution approximation has not
been studied. Instead, the interval given by

. Ll 1 G’
(noexp{rt * z .t G [tq + 2a-D 1):|}> (72)

should provide an acceptable approximation of a
100(1 — )% confidence interval for the mean popu-
lation size.

Geometric mean population size

The geometric mean of N(¢) (and the median of the
lognormal transition pdf) given by Eq. 11 is a function
of just one unknown parameter, u. Its ML estimate is

B = B(t; no, 1) = nexp(it). (73)

The ever-present small-sample bias can be removed
as before with Shimizu and Iwase’s (1981) results. The
UMVU estimate of 3(¢; n,, ) is found to be
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X R -1 ¢,
B= noexP(#t)oF1<q_‘2—; 2 0'2>- (74)

The variance of 8 becomes

Var(B) = ny’exp(2ut)

t2g? qg—1 ¢
~|:exp<7>0F,<———2 5 4—q4 0'4> - 1] (75)

While approximate confidence intervals for 8(¢; n,, u)
could be constructed from the asymptotic normal[3(z;
o, W), Var(B)] distribution of 3, using the exact con-
fidence intervals available for u (Eq. 31) is more
straightforward. A 100(1 — «)% confidence interval for
B(; no, 1) is

{neexpl(i % t.24 18/ V1)) (76)

Tuljapurkar (1982a) defined a quantity, denoted «,
which is the (finite or discrete) growth rate of the geo-
metric mean population size. For the diffusion process
N(?), that quantity is

a = B(1; ng, u)/ne = exp(u). a7

Just as the geometric mean B(z; n,, u) characterizes
“typical” sample paths of N(¢) better than does the
mean Y(t; ny, u, 02), the quantity a gives a better portrait
of the growth rate of those sample paths than does A.
Eqgs. 73-76 all apply directly to estimation of «, just
by setting ¢ = 1 and dividing by n, (or ny2 in Eq. 75).
In particular,

& = B(1; no, B)/ny = exp(i) (78)
is the ML estimate, and
- . g—1 ¢
a= exP(#)0F|<T; Z> (79)

is the UMVU estimate.

We mention that the UMVU estimates of A and «
we have calculated so far in practice (see Examples)
differed only slightly from the respective ML estimates.
The bias in the ML estimates may turn out to be neg-
ligible upon further study.

Forecasting

The essential question in forecasting is as follows:
given observations n, n,, . . . , n,of the system at times
to, Ly, . .., t,, what is the best prediction for the state
of the system at some future time ¢ > ¢,? We will focus
on predicting the value of X(¢) = log N(¢), since the
mean of X(¢) [and the geometric mean of N(¢)] typifies
the system better than the mean of N(¢). The Markov
property of the diffusion process implies that the ex-
pected value of X(¢), given that X(¢,) = x,, does not
depend on the earlier observations x,, X, ..., X, .
Also, the stationary transitions property implies that
the expected value depends on the amount of time,
s =1t — t, elapsed since the last observation, but not
otherwise on ¢,. Thus we have
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E[X(0)|X(t,) = x,] = v(s; X, 0) = x, + us. (80)

The ML estimate of v(s; x,, ), found by substituting
i1, 1s also the UMVU estimate:

¥ = (s; x,, 1) = x, + fis. 81)

This is the basic predicted value of X(z).

The accuracy of this prediction can be measured with
the mean squared prediction error, that is, the uncon-
ditional expectation of [X(f) — %]? over all possible
realizations of the process. The expectation is easily
calculated by first conditioning on x,, X, . . . , X, (and
thus on 4), and subsequently averaging with respect to
the distribution of 4. The result becomes

E[(X(®) — 4)]

=E{E[(X() — 9?1 X(0) =X, . .., X(t,) = x,]}

=E{E[(X(?) — ¥ + (x, + us) — (x, + us))?*| ...etc.]}

=E{o% + (i — p)’s?} = a2s<1 + ;)

4q,

(82)

Provided the model is adequate, the predictor ¥ is the
best in the sense of minimizing the mean squared error
among all linear unbiased predictors.

Prediction intervals for X(¢) are based on the fact
that X(¢) — 4 has a (unconditional) normal distribution
with a mean of zero and a variance given by Eq. 82.
The quantity [X(¢) — 4)/[6%s(1 + (s/t,))]" then has a
Student’s ¢ distribution with ¢ — 1 df. The resulting
100(1 — «)% prediction interval for X(¢) is

[@ + tonar \ /&2s<1 + ;)] 83)

A 100(1 — «)% prediction interval for N(¢) is provided
by transforming the endpoints of the interval (Eq. 83)
with the exponential function [exp(-)].

ESTIMATING EXTINCTION PARAMETERS
Probability of extinction

The probability (Eq. 15) of attaining a lower thresh-
old is, like other extinction-related quantities, a func-
tion of the two unknown parameters, u and ¢2. Its ML
estimate is

T = m(Xy H, 0°)

1I,u <0
— > Aa . R 4
exp(—24ix,/d2), i > 0. (84)
If the estimated probability is <1 (that is, if o > 0),
plotting it as a function of threshold population size is
sometimes informative. The most recent population
size n, can be taken as the “initial” size by letting x,

= log(n,/n,) in Eq. 84 (see Eq. 14). Then
7 = (n/ny)7,

(85)

and this estimated probability of reaching n, from n,
can be plotted as a function of n, (or, perhaps n, — n,)
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FiG. 2. Probability of reaching a lower threshold popu-

lation size plotted as a function of threshold size, as estimated
for the Aransas/Wood Buffalo population of Whooping Cranes.
Solid line represents maximum likelihood estimate; dashed
lines delimit 95% confidence interval.

to study how fast the probability decreases as n, de-
creases (Fig. 2).

Expressions for variances of extinction-parameter
estimates must at this time be based on approximation
results. We relied on the § method for obtaining such
expressions (see Rice 1988:142, Serfling 1980:117).
The method essentially involves linearizing the param-
eter function using a Taylor series expansion. The qual-
ity of the approximation varies from function to func-
tion, and conducting large-scale simulation studies of
these results is an important task for further research.
In the meantime, the § method provides working ex-
pressions that must be regarded somewhat cautiously.

Alternative variance estimates could be calculated
through bootstrapping or jackknifing (Efron 1982, Lele
1991), or through Monte Carlo simulation; we are
studying these possibilities. One method of calculating
bootstrap confidence intervals involves using the es-
timated distributions of 4 and 2. From Egs. 29 and
30, the estimated distribution of 4 is a normal(i, 62/
t,) distribution, and the estimated distribution of 67 is
that of a chi-square(q — 1) random variable multiplied
by 62/q. One generates a pair, i, and 62,, from these
distributions and then calculates the parameter of in-
terest, say 7, with the pair only if i, and 625 both fall
within their respective 100(1 — a)% confidence inter-
vals (Egs. 31 and 32). One repeats the process hundreds
of times or more; the resulting set of values of 7, range
across a 100(1 — a)% confidence interval for w(x,, u,
02). This bootstrapping method is illustrated below in
connection with the distribution of extinction time. We
mention that the proper observations for deletion in
jackknifing are transitions, according to the theory of
estimating equations (Lele 1991; discussed in the con-
text of stochastic population models by Dennis 1989b).



128

Also worth mentioning is the approach of computing
profile likelihoods and associated interval estimates
(e.g., Kalbfleisch 1986), which bypasses the problem
of variance estimation altogether.

We find, in general, the extinction parameters dis-
cussed in this section to be more poorly estimated than
the growth parameters of the previous section, in that
estimated variances calculated for practical examples
tend to be extremely large (see Examples section). There
are various possible explanations for this. First, time
series data may intrinsically provide less information
for estimating extinction parameters than for growth
parameters. Second, when u = 0, the Wiener-drift pro-
cess possesses so-called null recurrent behavior; al-
though the probability of ultimately attaining a thresh-
old is 1, the mean time to attain the threshold is infinite
(see Eq. 18). Examples we have analyzed typically have
estimates of u near 0, with consequent poor perfor-
mance of estimates of quantities related to the inverse
Gaussian distribution. Finally, the asymptotic prop-
erties of the 6-method variance estimates may be poor,
though our preliminary results with bootstrapping and
jackknifing (not reported here) have yielded compa-
rably sized variance estimates.

The approximate variance of @, when the true value
of u is positive, is found to be

Var(w) = [2xm(xy 1, 0%

{; L 2 - 1)}_ )
a’t,

(0%9)*
The distribution of # will converge to a normal dis-
tribution with a mean of w(x,, u, ¢?) and a variance
given by Eq. 86, provided ¢ > 0. However, an as-
ymptotic confidence interval for w(x,, u, ¢2) based on
transforming a confidence interval for the quantity 2ux,/
a2 in the exponent of Eq. 84 is probably better. Ac-
cordingly, an approximate 100(1 — «)% confidence
interval for w(x,, u, ¢2), assuming u > 0, would take
the form

exp( —(2ix/6) % 2.,V Var(2ix,/d?)) -

Here Var(2ix,/6%) = (4x,//o)[(1/t,) + 2@ — Du?/
(q%0?))] is the approximate variance of 2ix,/62, and

87

Var denotes evaluating the variance at the ML esti-
mates of u and ¢2. The upper bound of the confidence
interval can be taken as 1 when the computed Ex-
pression (87) exceeds this value.

Distribution of extinction time

Given that the threshold will be attained, the prob-
ability of attaining it before a fixed time ¢ is given by
the cdf (Eq. 16) of the inverse Gaussian distribution.
This probability is a function of u and ¢2. Its ML es-
timate becomes

G = G(t; x, B, ). (88)
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We point out here that the Expression (16) for the
inverse Gaussian cdf in terms of the standard normal
cdf, while mathematically correct, can be numerically
difficult to evaluate. The problem is numerical over-
flow of the exponential function [exp(-)] in the second
term of the expression. We provide in the Appendix
an easily programmed algorithm for calculating the
inverse Gaussian cdf. Evaluating the cdf at 4 and 62
then yields the ML estimate (Eq. 88).

Since G(¢; x; u, 02) is always between O and 1, we
recommend first constructing a confidence interval for
the (logit transform) quantity H(¢; x,, u, 62) = log{G(¢;
X4 M, 02)/[1 — G(t; x4, p, 0?)]} and then back-trans-
forming to obtain a confidence interval for G(¢; x,, u,
d?). According to the 6 method, the large-sample vari-
ance of H(t; x, i, 62) is

Var(H(t; x4, f, 62))
~ Var(d)(3H/du)* + Var(62)(dH/d0?)?

o aG/au \
~ t“)<G(1 - G))
3G/80> \’
+2(q - 1)(aZ/q)Z<G(1—_UG)> : (89)

This quantity can be estimated by substituting the ML
estimates i and 62. The derivatives in Eq. 89 can be
evaluated numerically, e.g., dG/du = [G(t; x, pu + ¢,
0%) — G(t x4 1, 6))/e, etc., for some small number e.
With Var(H(¢; x,, i, %)) denoting the estimated vari-
ance, an approximate 100(1 — «)% confidence interval
for G(¢; x,, u, 0?) becomes

1+ exp(—H(t; Xa By 62 % 2,2V Var(H(; x,, i, &2)))]"-

(90)
As an alternative, obtaining bootstrap confidence in-
tervals using the method discussed earlier (Estimating
extinction parameters: Probability of extinction) is
straightforward. One can calculate the whole function
G(t; x4 Rp, 025), that is, calculate G for a whole range
of values of ¢, for each bootstrap pair [z, 6%;. The
resulting hundreds of functions of ¢, when plotted on
one graph, will shade in a confidence region for
G(t; xy4 1, 0?).

Plotting the estimated cdf (Eq. 88) and associated
confidence intervals/regions as functions of ¢ reveals
how the cdf estimate becomes extremely uncertain as
t becomes large, if the number of observations is small
(Fig. 3). Though the confidence region as estimated for
the California Condor is enormous, Fig. 3 nonetheless
contains useful information. For instance, it indicates
that, in 1980, the probability of the population declin-
ing to one bird within 5 yr could have been higher than
0.15.

Mean time to extinction

The mean time (Eq. 18) to reach the threshold, given
the threshold is reached, is a function of just one un-
known parameter, u. Its ML estimate is
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0 = 0(xs, 1) = x/|R2]. on
Interestingly, when u is positive, so that attaining the
lower threshold is not certain, the mean time to reach
the threshold becomes smaller as u becomes larger
(Lande and Orzack 1988). This is because any sample
paths that cross the lower threshold usually do so quickly
when the growth rate of the process is high. A small
estimated mean time to extinction can thus occur in a
rapidly growing population as well as a rapidly declin-
ing one. The difference between these two situations
will be reflected in the estimated probability (Eq. 84)
of reaching the threshold. While a negative estimate of
u predicts certain attainment of the threshold, a large
(relative to 62) positive estimate of u predicts that at-
taining the threshold at all is an unlikely event.

The mean and the variance of 8 are infinite (i.e., do
not exist). However, the distribution of 8 converges to
a normal distribution, which possesses a mean and a
variance. The mean of the asymptotic normal distri-
bution is 8(x,, un), and the variance is given by the §
method:

Var(d) = X202/ (ust,). 92)
Thus, probability statements about the estimated mean
time to extinction can be approximated with calcula-
tions involving a normal distribution, even though the
estimate itself has a distribution without moments. In
particular, an approximate 100(1 — a)% confidence
interval for 6(x,, x) would be

(6 + z.2VVar@)). 93)

Median time to extinction

The median of the highly skewed inverse Gaussian
distribution is probably a more representative measure
of central tendency. The mean is inflated by the rare
sample paths of N(¢f) that take enormous amounts
of time to reach the threshold. The median, denoted
£0.5(Xa 1, 62), is defined as a root of a nonlinear equation
(Eq. 20); the implicit function theorem (e.g., Rudin
1964:195) guarantees that the median is locally a dif-
ferentiable function of u and ¢2. The ML estimate of
the median would be found as a root of

G(éO.S; xda ﬁ’ &2) - 0-5 = 0. (94)

This equation must be solved numerically for &, ; by
using an iterative procedure such as Newton’s method
(see Press et al. 1986:240), coupled with a subroutine
for evaluating the inverse Gaussian cdf (Adppendix). A
simple plot of G(¢; x,, ii, ) over a range of values of
t affords easy selection of a ‘“‘close” starting value for
the iterations.

The asymptotic variance of éo_s requires some ad-
ditional but straightforward computing. The é method
yields
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FiGg. 3. Cumulative distribution function (CDF) of the in-
verse Gaussian distribution, plotted using maximum likeli-
hood estimates of u and ¢ for the California Condor. The
distribution is that of the time required for 12 birds to decline
to 1 bird. Solid line represents maximum likelihood estimate;
dashed lines delimit 95% confidence region calculated with a
bootstrap method.

Var,s) ~ (a%,)(ﬂ)
g(EO.S; xd’ M, 62)

3G/da?
+ 2(q — 1)(az/q)2(—> .
8o Xap s 03] (95)
Here g(-; -, -, -) is the inverse Gaussian pdf (Eq. 17);

the derivatives can be calculated numerically. The ap-
proximate 100(1 — a)% confidence interval based on
the asymptotic normal distribution of éo_s is construct-
ed in the usual manner:

[é&s * 2.,V V;r(go.s)]'

All quantities in V’;zr(éo_s) should be evaluated at éo,s,
i, and 2.

ML estimates for other percentiles of the inverse
Gaussian distribution are calculated as above, using
the equation

(96)

Gy x4 1,63 —p=0
to obtain the 100pth percentile.

o7

Most likely extinction time

Estimating the location of the mode of the inverse
Gaussian distribution is also of interest, since the mode
represents the most likely time that the threshold will
be attained. From Eq. 21, the ML estimate of the
mode is

1* = t%(x,, B, )

x|l o3
M 42 20

where » = x,|f1|/62. The estimate corresponds to the
inflection point of the estimated inverse Gaussian cdf

(98)
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(Eq. 16). The variance of the asymptotic normal dis-
tribution of ¢*, given by the é§ method, is

Var(t*) ~ (02/1,)(01*/du)?
+ 2(g — 1)(0¥/q)X01*/d5%). (99)

When estimating this variance, the derivatives can be
calculated numerically; or, an enterprising investigator
might prefer to obtain analytical expressions. In either
case, an approximate 100(1 — a)% confidence interval
for t*(x,, u, 0?) becomes

[* + 2.,V Var()|. (100)

EXAMPLES

We selected seven species for detailed analyses, pri-
marily because long-term population estimates were
available for each species. Though six of the species
are birds, a variety of ecological conditions and life
history strategies are represented. The situations range
from a species now extirpated from the wild (the Cal-
ifornia Condor) to a once extremely threatened species
now undergoing a promising recovery (the Whooping
Crane). In this section, we briefly review some relevant
biological aspects and management efforts for each spe-
cies, and we discuss estimates and predictions resulting
from fitting the model.

Whooping Crane

The Whooping Crane has been the subject of pro-
tection efforts by the National Audubon Society and
the Federal governments of Canada and the United
States of America for more than half a century. The
Whooping Crane is a long-lived bird that stands 1.5
m tall with a wingspan of 2.1 m. It becomes sexually
mature on average at 5 yr of age and normally lays two
eggs per clutch. Usually only one chick is raised to
fledging age. One viable wild population exists, which
breeds in Wood Buffalo National Park in northwestern
Canada and winters at the Aransas National Wildlife
Refuge on the gulf coast of Texas. As a result of major
research and management programs, this population
increased from 18 birds in 1938 to 146 birds in 1989.
Efforts to recover the Aransas/Wood Buffalo flock in-
clude legal protection, manipulation of hunting seasons
for Snow Geese and Sandhill Cranes, egg manipulation,
habitat protection, and habitat improvement (USFWS
1986). Predator control programs have also been un-
dertaken at the Grays Lake, Idaho summering area
(USFWS 1986). Attempts to create a second wild flock
at Grays Lake by placing Whooping Crane eggs in
Sandhill Crane nests have been unsuccessful, because
no breeding has occurred, and flock mortality is un-
usually high in comparison to the Aransas/Wood Buf-
falo population.

An annual census of wintering Whooping Cranes
commenced in 1938 and has continued to the present
(Fig. 4). The data we analyzed consist of combined
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annual counts of young birds and birds with adult
plumage, as presented by Boyce (1987) and supple-
mented by recent counts (J. Lewis, personal commu-
nication). An overall trend of exponential growth, with
fluctuations, is evident in the data.

Model parameter estimates indicate a favorable out-
look for this population (Tables 1 and 2). We present
extinction parameter estimates corresponding to
threshold populations of n, = 100 and »n, = 10. Thresh-
olds for this and other populations were selected with
the idea that management efforts might be planned
usefully around the risks of dropping 1 and 2 orders
of magnitude (e.g., from 3-digit abundances to 2, from
3 to 1, etc.). The estimates presented here were cal-
culated with the 1940-1941 transition omitted from
the data, since the decrease of 26 to 16 birds is a sig-
nificant outlier (I; = —3.75, ¢y0s = 3.2, E;= —4.4,j =
3) according to the outlier procedures (Egs. 35 and 37).
That transition has an inordinate influence on the pa-
rameter estimates if included in the data; the UMVU
estimate of A\, for instance, decreases from 1.061 to
1.052.

Model diagnostic procedures, once the outlier tran-
sition is removed, reveal no significant additional out-
liers, influential observations, or first-order autocor-
relation among residuals (the outlier test [Eq. 35] and
the Durbin-Watson test [Eq. 34] were conducted here,
and in all examples to follow, at a significance level of
a = .05). However, a spectral analysis of the residuals
confirms a 10-yr cycle in the data reported by Boyce
(1987), Boyce and Miller (1985), and Nedelman et al.
(1987). Further refinement of the model predictions
might be possible by using a time-dependent infinites-
imal mean, w(?), in the Wiener-drift process (perhaps
a sine wave); we are currently developing such an ap-
proach.

We also find no evidence using the slope-change test
(Eq. 51) that the value of u changed starting with the
1957-1958 transition (7,3 = —0.1804, P = .86). Bink-
ley and Miller (1988) fitted a model in the form log
N(t) = log N(0) + ut + ¢ using ordinary least squares
regression, corrected for an error structure having first-
order serial correlation. They identified 1957 as a year
in which the population started to recover more rap-
idly, because their analysis indicated a shift in u oc-
curred. Their model is similar to ours in that E[log/N(?)]
is a linear function of time in both models. The “sto-
chastic process” aspects of our model are more explicit,
though, allowing for a connection to the stochastic the-
ory of age-structured populations and for estimation
of extinction-related quantities.

The Whooping Crane recovery plan (USFWS 1986)
calls for downlisting the Whooping Crane from en-
dangered to threatened status when (among other things)
40 nesting pairs are attained in this population. Binkley
and Miller (1988) estimate, using a survivorship anal-
ysis, tliar 40 nesting pairs would correspond to a total
population of 153 birds.
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FiG. 4. Total size of the Aransas/Wood Buffalo Whooping
Crane population, from 1938-1988. Data are from Boyce
(1987), supplemented by more recent counts.
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In order to compare Whooping Crane recovery fore-
casts from Binkley and Miller’s (1988) model and our
own, we refitted our model to the Whooping Crane
data using observations only through 1986, thatis, only
those observations available to Binkley and Miller. The
ML estimates of 4.884 x 10-2and 1.491 x 1072 for u
and o2, respectively, resulted after deleting the 1940-

TABLE 1.
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1941 transition. According to the ML estimate of the
mean time to reach 153 birds from 110 birds (Table
2), the population is expected under our model to attain
the recovery threshold by 1993. The prediction is more
optimistic than Binkley and Miller’s (1988) prediction
of 1997. Their estimate arises from projecting the es-
timated mean population size (in their model) until it
hits 153. We note that in stochastic processes, the time
until the mean population size hits a threshold is not
generally equal to the mean time until the population
hits the threshold. Also, the estimated inverse Gauss-
ian distribution here is somewhat skewed; the ML es-
timates of the 5th, 50th (median), and 95th percentiles
are, respectively, 1.31, 4.68, and 19.3 yr (starting from
1986). We note that the population has been progress-
ing rapidly toward the threshold of 153 birds since
1986 (Fig. 4).

Grizzly bear

The grizzly bear was formerly found throughout most
of western North America. Within the contiguous 48
states of the United States, it presently occurs in six
populations (USFWS 1982, Allendorf and Servheen
1986). The numbers of bears in these populations range
from fewer than 10 apiece in the North Cascade and
Selway-Bitterroot populations, to 440-680 in the
northern continental divide population. A 12-yr mark-

Estimated growth parameters for the Whooping Crane (WC), grizzly bear (GB), Kirtland’s Warbler (KW), Cal-

ifornia Condor (CC), Puerto Rican Parrot (PP), Palila (PA), and Laysan Finch (LF). Numbers in parentheses are 95%

confidence limits.

Animal o* &2t 7t A§ &| qf t, (yr)#
WC** 5.157 x 102 1.475 x 102 5.895 x 102 1.061 1.053 50 50
(1.705 x 107?) (1.029 x 107?) (2.516 x 107?) (1.025) (1.017)
(8.610 x 107?) (2.291 x 107?) (9.274 x 107?) (1.097) (1.090)
GBtYt —7.493 x 1073 8.919 x 103 —3.034 x 103 0.9968 0.9927 27 27
(—4.486 x 1072 (5.531 x 1073) (—3.874 x 107?) (0.9620) (0.9561)
(2.987 x 107?) (1.675 x 107?) (3.267 x 1073 (1.033) (1.030)
KW —1.873 x 102 1.673 x 10-2 —1.037 x 1072 0.9893 0.9819 20 38
(—6.264 x 107?) (9.674 x 1073) (5.183 x 107?) (0.9495) (0.9393)
(2.518 x 107?) (3.568 x 107?) (3.109 x 107?) (1.032) (1.025)
CC —7.685 x 102 0.1199 —1.688 x 1072 0.9792 0.9297 15 15
(—0.2686) (6.429 x 107?) (—=0.1977) (0.8206) (0.7644)
(0.1150) (0.2983) (0.1639) (1.1781) (1.1218)
PP}t 3.400 x 1072 1.341 x 1072 4.071 x 102 1.041 1.035 20 20
(—2.020 x 1073 (7.757 x 1073) (—1.023 x 107?) (0.9898) (0.9800)
(8.820 x 107?) (2.861 x 107?) (9.165 x 107?) (1.096) (1.092)
PA 7.732 x 102 0.2190 0.1868 1.190 1.094 9 13
(—0.2220) (9.991 x 107?) (—8.928 x 107?) (0.9146) (0.8009)
(0.3766) (0.8036) (0.4629) (1.589) (1.457)
LF —1.058 x 103 0.3662 0.1820 1.189 1.007 24 22.38
(—0.2657) (0.2212) (—9.010 x 107?) (0.9138) (0.7666)
(0.2636) (0.7206) (0.4542) (1.575) (1.302)
* i = ML (maximum likelihood) estimate of diffusion process drift parameter u (Eq. 24).
1 62 = unbiased estimate of diffusion process variance parameter > (Eq. 26).
7= UMVU (uniformly minimum variance unbiased) estimate of continuous rate of increase r (Eq. 58).
§ A = UMVU estimate of finite rate of increase A (Eq. 65).
| & = UMVU estimate of geometric finite rate of increase a (Eq. 79).
1 ¢ = number of transitions in data set.

#t, = length of time population has been observed.
** 1940-1941 transition deleted.
11 1983-1984 transition deleted.
31+ 1972-1972 transition deleted.
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TABLE 2. Estimated extinction parameters for the Whooping Crane (WC), grizzly bear (GB), Kirtland’s Warbler (KW),
California Condor (CC), Puerto Rican Parrot (PP), Palila (PA), and Laysan Finch (LF), calculated using (maximum like-
lihood) growth parameter estimates from Table 1. Numbers in parentheses are 95% confidence limits.

Animal n* n(n)t #f 8§ (yr) £5ll (yp) 1 (yr)
wC 146 100 6.72 x 102 7.34 5.41 2.82
(0.00) (2.60) (2.76) (1.88)
(0.204) (12.08) (8.05) (3.75)
10 4.90 x 10~° 52.0 49.4 44.5
(0.00) (18.4) (19.0) (20.0)
(7.56 x 10°%) (85.6) (79.8) (68.9)
110# (153) 1.00 6.76 4.68 2.18
(1.93) (2.27) (1.41)
(11.6) (7.08) (2.95)
GB 47 10 1.00 207 152 79.3
e (0.00) (0.00) (0.00)
e (1170) (679) (179)
1 1.00 514 448 333
e (0.00) (0.00) (0.00)
(2910) (2280) (1260)
KW 212 100 1.00 40.1 26.0 11.0
e (0.00) (0.00) (4.39)
(126) (63.1) (17.5)
10 1.00 163 143 109
e (0.00) (0.00) (0.00)
(512) (414) (254)
CC 12 10 1.00 2.37 0.506 9.88 x 102
(0.00) (0.138) (3.07 x 1073
e (7.60) (0.875) 0.167)
1 1.00 323 25.2 14.6
e (0.00) (0.00) (1.80)
(104) (68.8) (27.4)
PP 38 10 8.04 x 104 39.3 34.5 26.1
(0.00) (0.00) (0.00) (2.07)
(9.83 x 1073) (96.4) (78.8) (50.1)
1 3.70 x 10~° 107 102 91.7
(0.00) (0.00) (0.00) (0.00)
(1.17 x 1077) (263) (243) (205)
23 10 1.17 x 102 24.5 20.1 13.0
(0.00) (0.00) (0.00) (3.58)
(9.39 x 1073 (60.1) (44.2) (22.5)
PA 4358 1000 0.311 19.0 10.5 3.58
(0.00) (0.00) (0.00) (0.00)
(1.00) (78.1) (29.3) (6.58)
100 4.98 x 102 48.8 36.9 20.2
(0.00) (0.00) (0.00) (0.00)
(0.531) (200) (124) 42.4)
LF 9349 1000 1.00 2110 30.8 4.75
e (0.00) (0.00) (2.12)
(4.92 x 10% (143) (7.37)
100 1.00 4290 125 19.6
e (0.000) (0.000) (8.73)
(9.99 x 109) (1020) (30.4)
* n, = starting population size.
1 n, = threshold population size.
}# = ML (maximum likelihood) estimate of probability of attaining threshold (Eq. 84).
§ § = ML estimate of (conditional) mean time to reach threshold (Eq. 91).
l

Taanas-H

».s = ML estimate of (conditional) median time to reach threshold.

1 * = ML estimate of (conditional) most likely time to reach threshold.

# No observations used after 1986.

recapture study of the Yellowstone population gave a
peak population size estimate of 245 bears in 1967
(Craighead et al. 1974). The isolated Yellowstone pop-
ulation is the subject of our analysis.

Since the Craighead et al. (1974) study, reliable, pe-

riodic estimates of total population size have not been
available. However, Knight and Eberhardt (1984, 1985)
and Eberhardt et al. (1986) devised an estimate of the
minimal number of fully adult females in the popu-
lation during the 1st yr of any 3-yr period. The estimate
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is simply a running 3-yr sum of the numbers of female
grizzlies observed with cubs. The estimate is based on
two points: females with cubs are probably the most
observable segment of the population in aerial surveys,
and the breeding interval is at least 3 yr. The resulting
time series of these estimates, calculated from data
published by Eberhardt et al. (1986) and from more
recent unpublished data (R. R. Knight, personal com-
munication), shows substantial fluctuations (Fig. 5).
We mention that the Tuljapurkar and Orzack (1980)
results, giving an approximate normal transition dis-
tribution to log N(¢), apply in general to any linear
combinations of age or stage classes. Thus, segments
of a population can be analyzed with the model.

Model parameter estimates for this set of data sug-
gest that the Yellowstone grizzly population is doomed
to extinction, though not in our lifetimes (Tables 1 and
2). The confidence interval for u contains positive val-
ues (Table 1), indicating that such an interval estimate
of the extinction probability would contain values <1.
However, the high value of ¢2 creates a large estimated
chance of extinction even if u is slightly positive. The
estimated distribution of the time required to reach a
threshold of 10 bears, portrayed earlier in Fig. 1, at-
taches nontrivial likelihood to times ranging over
hundreds of years. A level of 10 adult female bears
would represent, if not extinction, a serious failure of
management and preservation efforts.

The estimates given in Table 1 were calculated with
the 1983-1984 transition deleted. In 1986, the ob-
served number of females with cubs in the population
jumped from 9 to 25 (R. R. Knight, personal com-
munication). This large increase caused an anomalous
increase in the 1983-1984 transition (the 3-yr sum
jumps from 39 to 51). The residual screening proce-
dures tag the transition as a suspect outlier; specifically,
for that transition E; = 2.9 (see Eq. 37), a value con-
siderably larger than the values for remaining transi-
tions. If the transition is included in the analysis, the
estimate of u becomes slightly positive (2 = 0.002356),
the estimate of ¢ becomes larger (6> = 0.01130), and
the estimated probability of reaching 10 bears, though
smaller, is still high enough to cause concern (& = 0.51).
Preservation strategies that bank upon such fortuitous
increases in population size are not likely to inspire
confidence.

Diagnostic indicators are otherwise acceptable, once
the 1983-1984 transition is omitted. No significant
outliers are present, according to the outlier test (Eq.
35), and the influence measures, Eqs. 38, 39, suggest
there are no highly influential transitions. The test for
first-order autocorrelation (Eq. 34) is inconclusive.

Closure of garbage dumps in Yellowstone National
Park during 1970-1971 was hypothesized to have sub-
stantial negative effects on the grizzly population. Such
effects have been reported for mortality and other de-
mographic parameters (Knight and Eberhardt 1984).
We find no evidence of a change in u starting with the
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Grizzly Bear (Yellowstone)
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FiG. 5. Estimated number of adult females in the Yellow-
stone National Park grizzly bear population, 1959-1987. Data,
listed by Eberhardt et al. (1986) and supplemented by recent
figures, consist of a 3-yr moving sum of the yearly number
of adult females seen with cubs.

(7
o

Estimated Number of Adult Females
rS
(¢ ]

1972-1973 transition (7,5 = 0.00838, P = .99), using
the slope-change test (Eq. 51). However, we do find
evidence of a change in o2 (F,, ,;; = 0.158, P < .01),
using the variance-change test (Eq. 56). In fitting the
two models, the 1965-1966 transition was tagged as
an outlier (| E;| > 2.9) and deleted from the analysis
in addition to the 1983—-1984 transition. Results thus
indicate greater variability in the female population
size index commencing around the time of the dump
closures. Two possible explanations for this variability
increase are: (a) without access to the stable food supply
provided by the dumps, the bears may be more influ-
enced by fluctuations in important wild food sources
such as whitebark pine nuts and ungulate carcasses; (b)
the method of data collection changed from observa-
tions at dumps (Craighead et al. 1974) to aerial obser-
vations (Knight and Eberhardt 1985), which may have
resulted in decreased precision. It will be interesting to
determine, after more years of data accumulate, if any
post-1988 fire effects can be detected with the model.

Several stochastic, age-structured simulation models
of the Yellowstone grizzly population have been con-
structed (Shaffer 1978, Knight and Eberhardt 1984,
1985, Shaffer and Samson 1985, Suchy et al. 1985,
Eberhardt et al. 1986). As best we can ascertain, these
models conform to the Tuljapurkar and Orzack (1980)
criteria, and the log-transformed total population size
projected by these models should have the approxi-
mate statistical characteristics of a Wiener-drift pro-
cess. A standing research problem is to study, using
extensive simulations, how well the Wiener-drift pro-
cess (and associated statistical inferences) portrays the
output of these detailed projection models.

Kirtland’s Warbler

The population of the Kirtland’s Warbler has fluc-
tuated around 200 singing males since 1971, after a
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FiG. 6. Total count of Kirtland’s Warbler singing males,
1951-1989. Data are from Walkinshaw (1983), supplemented
by more recent counts.
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precipitous population decline occurred sometime dur-
ing the 1960s (Fig. 6; data from Walkinshaw 1983, and
C. B. Kepler, personal communication). The decline
triggered yearly monitoring counts of singing males in
the species’ breeding grounds in Michigan, which have
continued to the present. Major recovery efforts on
behalf of this species have included legal protection of
the bird and its habitat, habitat improvement, and con-
trol of nest parasites. Limiting factors other than cow-
bird parasitism have not been well documented
(USFWS 1985).

The model parameter estimates calculated for the
singing male data give little cause for optimism (Tables
1 and 2). The results indicate that the population could
persist above 10 singing males for some hundreds of
years, but that the fluctuations will ultimately exter-
minate the population. In particular, the precipitous
drop of the 1960s is well within the bounds of usual
variability given by the model, since the drop occurred
over a relatively extended period of 10 yr. No signif-
icant outliers, influential transitions, or first-order au-
tocorrelation is apparent from analysis of residuals.

California Condor

The California Condor had been regarded as one of
the most endangered bird species in North America
(Koford 1953, Wilbur 1980, Ogden 1985). By 1987,
all the condors remaining in the wild had been taken
into captivity, and a captive flock of 32 birds now
exists, with 11 potential breeding pairs. It is the largest
North American bird, with a wingspan of 2.7 m. It
lays a single egg per clutch and is not sexually mature
until 5-7 yr of age. The efforts since 1980 to save the
wild condor population included nest site protection,
supplemental feeding, habitat protection, and a public
education program to prevent loss through shooting
(USFWS 1984a). In 1986, lead poisoning from inges-
tion of bullets in hunter-killed carcasses was identified
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as a major source of mortality (Wiemeyer et al. 1988).
Future release programs, in order to have a reasonable
chance of success, will have to be limited to lead-free
areas where supplemental feeding can be used to min-
imize exposure to lead-contaminated carcasses. Pres-
ent recovery efforts focus on increasing the size of the
captive flock prior to any release, and on development
of methods for releasing birds back into the wild.

Data collected from 1965 onward indicate an in-
exorable population decline throughout the 1970s (Fig.
7). These data, arising from the dubious “October sur-
veys,” are problematic (Wilbur 1980). Astonishingly,
no really accurate count was undertaken until the 1980s
(Snyder and Johnson 1985). Nonetheless, we take a
retrospective look at the October survey data, in order
to discover what conclusions could have been drawn
with the model in 1980 on the basis of the admittedly
poor information available. We follow Snyder and
Johnson (1985) in using the maximum number in each
multiday October survey as reported by Wilbur (1980)
for the population time series.

According to the fitted model, extinction was im-
minent (Tables 1 and 2). The estimated mean time of
32 yr to decline from 12 birds to 1 bird might by itself
have indicated that managers had enough time to at-
tempt to reverse the downward trend of the species in
the field. However, the estimated inverse Gaussian cdf
gives the probability of extinction within 20 yr to be
almost 0.4 (Fig. 3), and the most likely time of ex-
tinction to be under 15 yr. Note that the growth rate
estimates g, 7, X, and & suggest by themselves only a
slow decline, if any; the population’s fate is sealed by
the high value of 2. We mention that the variance
estimate incorporates variability from sampling as well
as population fluctuations; results about hitting times
reported here apply to the population as estimated.
This point is developed further in the Discussion sec-
tion. No qualifications to these pessimistic conclusions

California Condor
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Fic. 7. Estimated total wild population of the California
Condor, 1965-1980. Data are from October surveys as listed
by Wilbur (1980) and Snyder and Johnson (1985).
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are found in the model diagnostic procedures; no sig-
nificant outliers, influential transitions, or autocorre-
lation can be detected. We permit ourselves a hindsight
speculation that the decision to take the field popula-
tion into captivity might not have been postponed so
long had such estimates been considered.

Puerto Rican Parrot

The number of breeding pairs of the highly endan-
gered Puerto Rican Parrot has not exceeded five pairs
in the last 15 yr (Wiley 1985, Snyderetal. 1987, USFWS
1987). This long-lived bird exists in the wild only in
the Luquillo Forest of Puerto Rico. It breeds at 2-3 yr
of age and lays 2—4 eggs. The Puerto Rican Parrot is
probably the most intensively managed species re-
viewed in this paper. Biologists protect nest sites from
predators, competitors, and human disturbance. They
also rebuild nest sites, excavate new sites, remove and
care for young, double clutch wild birds, and repair
broken bills, wings, and feathers (USFWS 1987). As a
result of this intensive management, as well as the
release of captive-reared animals (by replacement in
nests of juveniles that have died), the population in-
creased from 14 in 1975 to 38 in 1989 (Fig. 8). The
species would almost certainly have gone extinct with-
out the intervention.

The data we treat here consist of the largest count
of adult wild birds recorded between January and April
(prebreeding period) of each year, or population esti-
mates “by reasonable inference” made by biologists
on the scene when they were convinced undercounting
had occurred (Fig. 8; Snyder et al. 1987, M. Wilson,
personal communication). In 1972, 2 birds were re-
moved from the population of 16 birds within days of
the count; thus, the 1971-1972 transition is 16—16 birds,
and the 1972-1973 transition is taken as 14-16 birds.

Model parameter estimates suggest the population
has favorable prospects for recovery, provided the
management program continues (Tables 1 and 2). We
regard this prediction as unreasonably optimistic for
reasons given below. The residuals from the fitted mod-
el yield no evidence of influential transitions, autocor-
relation, or outliers. We tested whether any significant
change in u occurred starting with the 1982-1983 tran-
sition, since the management efforts intensified in the
early 1980s. The parameter estimates differ markedly
(before: 4, = 0.01027; after: g, = 0.07808), but the
difference is not statistically significant because of the
large population variability and limited number of ob-
servations (7,3 = —1.269, P = .22). Nonetheless, a
substantially higher estimate of the chance of extinc-
tion results if the transitions from 1982-1983 onward
are deleted [n, = 1, n, = 22, # = 6.59 x 1073, 95% c1
= (0.00, 0.21)].

Two ecological factors not explicitly accounted for
in the model give reason for pessimism about the spe-
cies’ chance of survival. First, the model is merely
descriptive in the sense that the cause of the popula-
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Fic. 8. Estimated total wild population of the Puerto Ri-
can Parrot, 1969-1989. Data are from Snyder et al. (1987),
supplemented by more recent counts.

tion’s increase is not incorporated. This species in-
creased because of addition of captive-reared birds,
protection of juveniles, and so on; however, the breed-
ing population has remained nearly constant. Second,
environmental catastrophes are not included in the
model unless such events are a regular and frequent
source of variability in the time series. When this paper
was being written, Hurricane Hugo had just ravaged
Puerto Rico and South Carolina. A preliminary survey
of the Luquillo Forest in the aftermath (M. Wilson,
personal communication) has yielded sightings of only
8-11 birds. The birds are normally widely dispersed
during the fall months, and such sightings could cor-
respond to a population of =23 birds (M. Wilson, per-
sonal communication). With a starting population of
23 instead of 38, the estimated risk of declining below
10 birds increases by a factor of over 14 (Table 2).
Furthermore, the values of u and 62> may have changed
after the storm, since extensive loss of canopy foliage
cover has exposed the birds to predation from hawks.
The 1989-1990 transition will no doubt be an “outlier”
according to the model. The model is a supplement to,
not a substitute for, basic knowledge about the popu-
lation.

Palila

The Palila is a member of the Hawaiian honeycreep-
er family, a family known as one of the most striking
examples of adaptive radiation in birds (Scott et al.
1988). This 2-2.5 cm bird weighs an average of 16 g,
breeds at 1 yr of age, and lays 1-3 eggs per clutch (van
Riper 1980, Berger 1981). The bird occurs only on the
island of Hawaii and is restricted to portions of the
upper slopes of a single mountain, Mauna Kea (Scott
et al. 1984). Ongoing recovery efforts include biannual
monitoring and elimination of alien species of goats
and sheep, which were seriously degrading habitat on
the island. Improvement of habitat quality as a result
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Fic. 9. Estimated total population of the Palila, 1975-
1988. Data are from Scott et al. (1984), supplemented by more
recent figures.

of sheep and goat removal should allow for larger pop-
ulation sizes more evenly distributed around the
mountain. Also, plans for fire control are in place
(USFWS 1978, Scott et al. 1984).

Population estimates since 1975 have varied from
under 1600 to over 6000 birds (Fig. 9; Scott et al. 1984).
While some of the variability is due to sampling error,
fluctuations in population size account for a larger por-
tion of the variability (Scott et al. 1984).

Model parameter estimates indicate a high propen-
sity for population increase, but high uncertainty is
present in those estimates because of the population
fluctuations (Tables 1 and 2). The ML estimate of the
chance of the population ever dropping below 100 birds
is low, at =5%, but the 95% confidence interval ranges
up to 50%. The chance of dropping below 1000 birds
cannot be estimated with any useful degree of preci-
sion. In this situation, with a large tendency to increase
but also with large stochastic fluctuations, we see the
most difference between the estimates of the growth
rate parameters A and «. Recall that « discounts the
small chance of the population reaching enormous sizes.

Laysan Finch

The Laysan Finch is also a Hawaiian honeycreeper.
Females breed at 1 yr of age (males vary somewhat),
clutch sizes range from 1 to 5 eggs and some birds
produce two clutches a year (M. Morin, personal com-
munication). The species is found in two populations
on the Leeward islands of Hawaii in a land area of
<500 ha (USFWS 1984b). Recovery efforts on behalf
of this species include a translocation effort in 1967 by
the United States Fish and Wildlife Service (Conant
1989), which resulted in the establishment of the Pearl
and Hermes reef population. The originally small
translocated population has increased to 500-700 birds.
The establishment of the translocated population was
an important step in reducing the chance of the Laysan
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Finch becoming extinct through stochastic forces. Ad-
ditional recovery efforts have included the elimination
of feral rabbits from Laysan Island (in the Leeward
islands). This alien species threatened to destroy all
native vegetation. The islands were designated a na-
tional wildlife refuge early in this century, and formal
recovery plans written more recently call for guarding
against the accidental introduction of predators and
nonnative organisms such as insects and weeds (USFWS
1984b). Currently, 13 Laysan Finches are in captivity.

In 22 yr of monitoring, estimates of the Leeward
islands combined populations have fluctuated wildly
between 5000 and 21000 birds (Fig. 10; M. Morin,
personal communication). As with the Palila, sampling
error accounts for a part of the variability, but the
fluctuations of the population itself form the largest
component.

Again like the Palila, the population variability dom-
inates the model parameter estimates (Tables 1 and 2).
The extinction parameter estimates suggest that the
long-term survival prospects for this species are un-
certain. Though the estimated chance of dropping be-
low 1000 birds is 1.00, great uncertainty is associated
with this estimate because of the population fluctua-
tions. More revealing is the disparity between the mean
time to reach that level (over 2000 yr) and the most
likely time of reaching that level (under 5 yr). Such
extreme skewness of the estimated inverse Gaussian
distribution indicates that explosions and catastrophes
may be the rule rather than the exception in this pop-
ulation.

DISCUSSION
Sampling variability

When the observations in a time series are popula-
tion size estimates, the data reflect sampling variability

Laysan Finch
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Fic. 10. Estimated total population of the Laysan Finch
on Laysan Island, Hawaii, from transect samples taken at
irregularly spaced time intervals, during 30 March 1969
through 16 August 1988. Data compiled by M. Morin.
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as well as stochastic population fluctuations. If the sam-
pling variation in the estimates is reasonably constant,
that is, if the population sizes are estimated with rela-
tively equal precision over time, the stochastic expo-
nential growth model can be fitted to the series. Then
the estimate of ¢2 conceptually reflects sampling vari-
ability as well as stochastic population fluctuations.
The conclusions derived from fitting the model will
then apply to the population (or portion of the popu-
lation) as estimated, provided the model adequately
describes the series. For example, in our analysis of the
California Condor, 6(log(12/1), i) in Table 2 is strictly
described as the mean time required for the October
survey population estimate to reach one bird. Such an
event may or may not correspond to the population
itself reaching one bird, depending on the accuracy of
the population estimates.

Sampling variability can also be incorporated di-
rectly in the likelihood function for observations from
a diffusion process. In general, this amounts to includ-
ing an additional variance parameter. Garcia (1983),
for example, included a variance component due to
sampling in a diffusion model of forest growth. How-
ever, as Garcia found, one of the variance parameters
becomes nearly nonidentifiable; that is, the data pro-
vide little information for its estimation. The sampling
component could in principle be estimated from re-
peated estimates of the same population for each sam-
pling occasion. Situations for which this is practicable
are rare, though.

We mention that none of the above approaches can
adequately account for sampling variation if the pop-
ulation sizes are estimated with widely varying preci-
sion. Thus, in analyzing the estimates of the minimal
number of fully adult grizzly bear females, we are as-
suming that these estimates represent a reasonably con-
stant proportion of the total population of fully adult
females. This is unlikely to be the case if, for example,
the aerial survey method is not standardized from year
to year with respect to factors such as flying time and
area covered (e.g., Seber 1982:454).

Density dependence

Perhaps the most important explicit omission in this
model, and in the stochastic projection matrix for-
mulation in general, is density dependence. Some en-
dangered species are held in check by sheer lack of
habitat. In such situations, unbridled exponential
growth is hardly a likely event. The vital rates of pop-
ulations near equilibrium are in balance; the fecundi-
ties and survival rates combine to produce a value of
A near 1. But to the extent that a stationary stochastic
projection matrix can produce a population size ap-
pearing to fluctuate around a stable level, the diffusion
model with a value of u near O can describe such be-
havior, though not for indefinitely long periods. An
example is the Laysan Finch; the population levels
fluctuate but appear to have no trend up or down (Fig.
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10). The Wiener-drift diffusion model adequately fits
the data. The effect, however, is the introduction of
large uncertainty into the parameter estimates and pop-
ulation predictions.

An alternate approach for modeling a population
fluctuating around equilibrium is to use a diffusion
process with some explicit density-dependent feedback
in the infinitesimal mean. Density-dependent diffusion
processes can approximate the statistical behavior of
simulation models based on stochastic projection ma-
trixes or stochastic difference equations, such as that
described by Jacquez and Ginzburg (1989) and Ferson
etal. (1989), or the behavior of density-dependent birth—
death processes such as the model investigated by Bur-
key (1989). Dennis and Patil (1984) showed that an
SDE version of the logistic model can serve as a general
approximation for a density-dependent diffusion pro-
cess having an underlying, stable equilibrium popu-
lation size. Parameter estimation for this model was
discussed by Dennis and Costantino (1988) and de-
veloped in more generality by Dennis (19895b); the for-
mer analyzed many examples of populations (flour bee-
tles) fluctuating stochastically around equilibrium. Tier
and Hanson (1981) derived results on the extinction
(first-passage) time distribution for this logistic SDE
model and others. The ramifications of using a sto-
chastic logistic or similar model for estimating extinc-
tion-related quantities have not been investigated. Ex-
tinction parameter estimates for the Palila and the
Laysan Finch might be greatly improved by such an
approach.

Maximum population size

Some projection matrix models and stochastic mod-
els appearing in the conservation biology literature in-
corporate an upper ceiling or reflecting boundary rep-
resenting a maximum population size (e.g., Suchy et
al. 1985, Goodman 1987). The main effect of incor-
porating a ceiling is that the probability of reaching
any lower boundary becomes 1; the investigations fo-
cus on properties of the extinction time (particularly
the mean time to extinction). In some cases, the upper
boundary is known. For instance, Suchy et al. (1985)
use a value of 300 bears for the maximum grizzly pop-
ulation in Yellowstone, since that figure is a manage-
ment target. In many cases, however, an upper bound-
ary would have to be estimated. Such an estimate would
likely take the form of an educated guess by biologists,
because estimating an upper boundary from popula-
tion size data in any statistically consistent fashion is
extremely difficult.

We point out that extinction quantities obtained from
unbounded models are often convenient approxima-
tions to quantities arising from bounded models. In
the exponential growth SDE developed here, the prob-
ability of extinction (Eq. 15) is obtained as the prob-
ability of reaching x, before reaching some upper level
X,, by taking the limit as x, becomes large. Thus, Eq.
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15 need not be regarded as implying that the population
might survive eternally. Rather, Eq. 15 gives the ap-
proximate probability of reaching x, before, say, some
large upper management goal is attained. Likewise, the
first-passage time, 7, is approximately the waiting time
required to reach x,, given that x, is reached before
reaching the upper level.

In general, models with upper reflecting ceilings are
biologically and statistically awkward. Instead, incor-
poration of density-dependent feedback (see above dis-
cussion, Density dependence) appears more promising
for useful applications in conservation biology.

Types of stochastic behavior

Stochastic forces incorporated into population mod-
els have been categorized, more or less on intuitive
biological grounds, as ‘“demographic,” “environmen-
tal,” or ““catastrophic” (May 1974, Leigh 1981, Shaffer
1981, 1987, Goodman 1987, Simberloff 1988). A fourth
type of stochastic variation, ‘“‘genetic’’ (Shaffer 1981),
yields effects on population size, which would quali-
tatively fall into one of the above three categories (typ-
ically demographic, in the case of fluctuations in fitness
from genetic drift). The fluctuations in the exponential
growth SDE (Eq. 12) would appear, from our inter-
pretation of the literature, to be of the environmental
type. Unfortunately, the mathematical criteria for cat-
egorizing a given stochastic model into one of these
three classes have remained vague, resulting in con-
fusion on this point among population biologists. In
particular, the type of mathematical model, such as a
discrete birth—death process, continuous diffusion pro-
cess, etc., does not necessarily peg the model’s sto-
chastic behavior.

We have found that the following criteria, an exten-
sion of some remarks by May (1974:33), form useful
working definitions of these three types of stochastic
behavior. Empirical (Pimm et al. 1988) and theoretical
(Leigh 1981) studies suggest that the coefficient of vari-
ation of population size is an important component of
extinction-related properties of population growth. Ac-
cordingly, let

o VYOIV = 7
(& 70) = “EING) NO) = ]

(101)

be the coefficient of variation of the stochastic process
N(t). For fixed ¢, classify the stochastic fluctuations as
demographic, environmental, or catastrophic based on
whether 4(¢, n,) decreases to zero, becomes constant,
or increase without bound, as a function of 7,

This definition captures the spirit of the intuitive
biological criteria. A model representing demographic
forces essentially becomes a deterministic model for
large population sizes. An example is the discrete, lin-
ear birth—death process explained in detail by Bailey
(1964) and adopted by MacArthur and Wilson (1967).
In addition, projection matrix simulations in which
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members of each age class are subjected individually
to survival-death Bernoulli trials would display de-
mographic fluctuations. By contrast, environmental
fluctuations in a model occur proportionately and are
evident throughout all population sizes. By this defi-
nition, the exponential growth SDE (Eq. 12), and the
logistic SDE used by Dennis and Patil (1984) and Den-
nis and Costantino (1988), represent environmental
fluctuations. Stochastic projection matrices (see Eq. 1)
would fall under this category. Note that the constant
coefficient of variation could, in fact, be quite high.
The variability of population size in some environ-
mental-type models might thus appear to be rather
catastrophic in magnitude; the key to the classification
is that large populations fluctuate to the same propor-
tional degree as smaller ones. Finally, models of truly
catastrophic events (e.g., habitat destruction through
fire) change a population by progressively larger pro-
portions as the population size becomes larger.

A lingering problem with the proposed classification
scheme is the terminology; the terms ‘“demographic,”
“environmental,” and ‘‘catastrophic’’ contain poten-
tially misleading implications about the sources of the
stochastic variability. However, the terms are widely
used, and to attempt here to coin substitutes might
confuse more than clarify. Another minor point is that
8(t, n,), as a function of low values of »,, might contain
increasing, constant, and decreasing portions; realistic
models might contain blends of stochastic forces, which
vary in importance at different population sizes. The
classification considers only limiting behavior as n,
becomes large and is therefore somewhat coarse.

Time series models

An alternative approach to modeling population size
is based on standard time series techniques (e.g., Pan-
kratz 1983). The approach consists of transforming
and/or differencing the data until obtaining a stationary
series described by an autoregressive and/or moving
average process. Such an approach can in fact yield
useful information. Boyce (1987), for example, dem-
onstrated the 10-yr cycle in the Whooping Crane data
with such analyses.

The exponential growth SDE (Eq. 12) is a specific
model for a nonstationary time series. Stationarity,
according to the model, is achieved by log transforming
and differencing the series. The resulting normal linear
model for the increment data is the simplest particular
case of the standard time series models. The diagnostic
procedures aid in evaluating whether or not this par-
ticular model describes the data well.

The main advantages of the exponential growth SDE
over other conventional time series models are as fol-
lows. First, the SDE model has a conceptual basis in
the theory of age- or stage-structured population growth.
Second, the time series available for real populations
are often too short to take full advantage of the standard
time series approach to model construction. Third, ob-
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servations are frequently not collected at equal time
intervals, a situation which is easily covered by the
SDE model but difficult to handle by more usual time
series methods. Finally, explicit and convenient results
are available with the SDE model for estimating growth
and extinction parameters.

That is not to say quantities such as the mean time
to extinction could not be estimated from a conven-
tional time series model. After developing such a mod-
el, one could conduct Monte Carlo simulations to es-
timate extinction parameters. If adequate data are
available for identifying a particular time series model
(or detailed age-structured model, for that matter), we
recommend conducting the simulations and compar-
ing the estimates to those described in this paper.

Management applications

The exponential growth SDE (Eq. 12) could prove
to be useful in a variety of management contexts. De-
cisions about recovery programs for many endangered
species must often be made with inadequate data avail-
able. Detailed information suitable for constructing a
credible life table for a rare species seldom exists; man-
agement programs are fortunate if population size es-
timates, or even values of a relative population size
index, are collected regularly. In such situations, the
model might help biologists quantitatively assess what
impact the usual, prevailing stochastic variation has
on the long-term prospects for a species’ survival. We
caution that management policies should not be based
solely on the results of the analyses described in this
paper. Estimates of extinction-related quantities, as we
have shown, are accompanied by large uncertainty, and
effects of freak catastrophes are not accounted for in
the model. However, even an order-of-magnitude as-
sessment, or an assessment limited to the effects of
environmental-type fluctuations, is better than none at
all.

One crucial question regarding management of cer-
tain endangered species is whether, and if so when, to
establish viable captive populations. The decision to
capture some or all individuals of a species must be
made before the wild population is reduced to a level
having insufficient demographic and genetic diversity
for a healthy founder population. The model conceiv-
ably could contribute information useful for this de-
cision. The recovery programs for the Dusky Seaside
Sparrow (Ammodramus maritimus), Guam Broadbill
(Myiagra freycineti), and Kauaii Oo (Moho braccatus)
are examples in which the debate over captive rearing
raged interminably, only to have the wild population
become extinct. Meaningful quantitative assessment of
the species’ recovery chances in these cases might have
clarified earlier the urgent need for changes in man-
agement policies. There is little doubt that the 11th-
hour decisions to capture the last remaining individ-
uals of the black-footed ferret (Mustela nigripes) and
the California Condor have provided opportunities to
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save these species. In the case of the California Condor,
the model strongly suggests that emergency measures
would have been justified some years sooner.
Another management question, in the United States
at least, concerns the decision to list a species as offi-
cially “endangered” or “threatened” under the Endan-
gered Species Act. Formal listing under the endangered
or threatened categories empowers (and compels) gov-
ernment agencies to institute drastic measures to limit
human activities that might impinge upon a species’
survival chances. Predictably, in cases such as the Spot-
ted Owl (Strix occidentalis) and Yellowstone grizzly
bear population, biological grounds for such decisions
are often discounted by political considerations (see,
for instance, Simberloff 1987). Frequently lacking in
the arguments over formal listing, though, are clear,
defensible estimates of the risks of extinction. For ex-
ample, recent upward trends in the Yellowstone grizzly
population (as indexed by the estimated number of
adult females; Fig. 5) have inspired optimistic pro-
posals for removing the population from threatened
status. Our estimates of the prospects for this popu-
lation suggest that such proposals are premature.

CONCLUSIONS

The stochastic exponential growth model presented
here combines minimum essential biological, stochas-
tic, and statistical elements needed for assessing the
chances of an endangered species’ recovery. The model
has a biological basis in the theory of age- or stage-
structured populations. The stochastic fluctuations in-
corporated are of the environmental type, which are
considered to pose greater problems for population
persistence than those of the demographic type. The
statistical interface of model with practice is well de-
veloped, so that parameter estimation, model evalu-
ation, and forecasting are possible using only time se-
ries data on population sizes.

The model is no panacea. We do not intend for tri-
age-style decisions about species preservation to be
based solely on estimates arising from this model. The
model does not incorporate some ecological factors,
including freak catastrophic events and density depen-
dence, which can be important in particular circum-
stances. Nonetheless, the examples we analyzed dem-
onstrate that the model can provide useful supplemental
information in a variety of situations.

Growth of endangered species is intrinsically sto-
chastic. Accounting for stochastic forces in practice is
a crucial problem in conservation biology. Such ac-
counting will require, in addition to intensified efforts
in population biology, further serious research atten-
tion to statistical questions of estimation and testing
for mathematical models of population growth.
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APPENDIX

Consider the inverse Gaussian cumulative distribution
function (cdf) (Eq. 16). Numerical overflow can arise in eval-
uating (Eq. 16) at given values {, 62, x, and ¢ due to the
exponential function in the second term of the cdf. Note that
the second term is the product of a very large number
[exp(-)] and a very small number [®(-)]. The overflow problem
can be circumvented if the two expressions in the product
can be evaluated simultaneously.

We reparameterize Eq. 16 by defining

a=x/\Ve, (A.1)
b= |ul/Ve, (A.2)
y= (bt - ayVi, (A.3)
z= (bt + a)/V1, (A.4)
so that the inverse Gaussian cdf is
G(t; x4 u, 6%) = ®(y) + exp(2ab)®(—2z), (A.5)

where ®(-) is the standard normal cdf (Eq. 7). Let ¢(y) denote
the derivative of ®(y):

() = (2m)~"exp(—y*/2).

Several approximations are available for evaluating ®(-) as a
function of ¢(-) (Abramowitz and Stegun 1965). We found
the following formulas to be accurate and convenient to pro-
gram. If y < 4, then from Abramowitz and Stegun (1965:
932)

(A.6)

) = 1 = ¢O0d\g, + dog” + ... +dsq,], (A7)

whereq,=1/(1 + d,y)andd, =0.2316419,d,=0.319381530,
d,=—0.356563782,d,=1.781477937,d,= —1.821255978,
and d; = 1.330274429. Alternatively, if y = 4 then we rec-
ommend approximating ®(-) by

c[)(y):l_d)_(y)
y

.[1 _lz+'..+(—1)s1-3...(2s—
y st

1)] ,  (A8)
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with s = 7 (Abramowitz and Stegun 1965:932).
Notice that
#(v) = exp(2ab)$(z). (A.9)

Expression A.9 is the key to calculating A.5, since it follows
from A.9 that the product exp(2ab)®(—z) can be approxi-
mated as a function of ¢(y) and z. In particular, if z < 4 then

exp2ab)¥(—z) = ¢()d\g. + dog.*> + ... + dsq.’),
(A.10)
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where g, = 1/(1 + dyz),and d,, . .

For values of z = 4
exp(2ab)®(—z)

zd’_(”[l R S Gl Vi RORY € 1)],

z z? z

., ds are given in Eq. A.7.

(A.11)

where we suggest s = 7.





