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Abstract. 'We present a new multivariate model for describing jointly fluctuating, den-
sity-dependent populations. The model is a stochastic, multivariate version of a discrete-
time logistic model that explicitly accounts for spatial variation of growth rate parameters
and covariances of fluctuations between populations. Statistical methods for applying the
model to time series data on population abundances are described in detail. We derive
formulas for maximum-likelihood estimates of model parameters, and we develop hypoth-
esis tests for various reduced model structures, such as density independence or zero co-
variance. The applicability of the model to any given data set can be thoroughly evaluated
with diagnostic procedures. As examples, we apply the model to two population systems:
rangeland grasshoppers (Orthoptera: Acrididae) in three physiographic regions of Montana,
USA, and bull trout (Salvelinus confluentus) in four tributaries of the Flathead River in
Montana. The model and associated statistical methods have potentially important appli-
cations in conservation biology for describing metapopulations and for assessing joint
jeopardy of multiple populations.
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INTRODUCTION

The reader may have anticipated the general con-
clusion that we have been leading up to. The numbers
of animals in a natural population may be limited in
three ways: (a) by shortages of material resources,
such as food, places in which to make nests, etc.; (b)
by inaccessibility of these material resources relative
to the animals’ capacities for dispersal and search-
ing; and (c) by shortage of time when the rate of
increase is positive. Of these three ways, the first is
probably the least, and the last is probably the most,
important in nature. Concerning c, the fluctuations
in the value of r may be caused by weather, predators,
or any other component of the environment which
influences the rate of increase.

—Andrewartha and Birch (1954: Section 14.2)

Density dependence has occupied the interests of
ecologists for generations. Andrewartha and Birch syn-
thesized this thinking in their massive and now classic
1954 tome. As illustrated in the above quotation, An-
drewartha and Birch had a broad vision of the problem
of abundances, in which the mechanisms of density
regulation were embedded in a spatial matrix and im-
pinged upon by stochastic influences.

A generation of ecologists has struggled with the
quantitative treatment of the smallest part of this vision,
that is, the question of whether natural populations are
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regulated by density-dependent mechanisms. This has
proven to be a much stickier statistical problem than
its simple statement implies (Eberhardt 1970, Reddin-
gius 1971, 1990, Bulmer 1975, Royama 1977, 1981,
Slade 1977, Vickery and Nudds 1984, 1991, Gaston
and Lawton 1987, Pollard et al. 1987, den Boer and
Reddingius 1989, Reddingius and den Boer 1989, Wol-
da 1989, den Boer 1990, 1991, Solow 1990, 1991, Tur-
chin 1990, Berryman 1991, Turchin et al. 1991, Crow-
ley 1992, Turchin and Taylor 1992, Hanski et al. 1993,
Holyoak and Lawton 1993, Wolda and Dennis 1993,
Wolda et al. 1994, Fox and Risdell-Smith 1995). Den-
nis and Taper (1994) reviewed many of the statistical
and conceptual problems associated with the detection
of density dependence in single populations, and pro-
posed statistical methods for analyzing univariate time
series data with a stochastic model of density-depen-
dent population growth.

Frequently, though, population time series are not
univariate. When related populations at different spa-
tial locations are monitored, the data take the form of
simultaneous time series of population abundances. It
is tempting to pool such data and estimate common
parameters for a univariate model (for instance, Perry
et al. 1993) in order to gain power and shorten confi-
dence intervals afforded by the usually short time se-
ries. However, pooling time series data from multiple
sites has two potential drawbacks.

First, model growth rate parameters (e.g., r and k,
Kemp and Dennis 1993) as well as noise variability
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parameters (e.g., 0, Kemp and Dennis 1993) will typ-
ically have spatial variation. Ecological conditions af-
fecting parameter values, in a heterogeneous world, are
expected to be different from site to site.

Second, multiple time series can display coherence
or spatial synchrony (Hanski 1991, Hanski and Woiwod
1993), that is, the fluctuations of population abun-
dances at the different locations can appear correlated.
Stochastic environmental factors that have region-wide
influences on populations, termed regional stochasti-
city by Hanski (1991), are an important potential cause
of spatial synchrony. Analyzing populations separately
with univariate models in such situations will yield
results that are interdependent in unknown ways.

Clearly, the next generation of ecological time series
models should account for all three of Andrewartha
and Birch’s factors of density dependence, space, and
stochasticity.

In an effort to begin the development of a quanti-
tative treatment of Andrewartha’s and Birch’s vision,
we extend the approach of Dennis and Taper (1994) to
include populations at multiple sites. In this paper, we
introduce a multivariate model of jointly fluctuating,
density-dependent populations. The model is a sto-
chastic, multivariate version of the discrete-time Rick-
er/logistic model. It explicitly accounts for spatial vari-
ation in growth-rate parameters and covariances of
fluctuations between populations. We develop methods
for using information from multiple time series in mod-
el identification, parameter estimation, and hypothesis
tests concerning density dependence. We are able to
measure density dependence in species that are buf-
feted by stochastic fluctuations in their growth rates
and distributed in a spatial framework. With this model,
many of the questions raised by Andrewartha and Birch
concerning the relative importance of stochastic fluc-
tuations vs. density-dependent forces ultimately can be
addressed.

The model we present in this paper does not explic-
itly incorporate dispersal. In ‘‘metapopulations,” sub-
populations distributed in space are connected by mi-
gration. Migration can be an additional cause of spatial
synchrony when it is a sizable proportion of population
growth rates (see Hanski and Woiwod 1993). Thus, a
full analysis of metapopulations would require a quan-
tification of migration rates (Gilpin and Hanski 1991,
Stacey and Taper 1992, Stacey et al. 1997). We will
return in the Discussion to the potential advantages and
limitations of using our methods in the analysis of me-
tapopulations.

MODEL DESCRIPTION

We first describe briefly the simple univariate case
of the model and then expand to the full multivariate
version. Let N, be population abundance at time ¢, as
censused, estimated, or indexed. We assume that the
population is observed at about the same time every
year, producing a time series of length g + 1: N, N},
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..., N, Let the log-transformed abundances be de-
noted Xo = In Ny, X, =In Ny, ..., X, = In N,. Also,
let ¥, = X, — X,_, = In(N,/N,_)); Y, is the change in
logarithmic population abundance at time ¢ and is a
discrete-time analogue to the per-unit-abundance
growth rate in continuous-time models ([1/n]dn/dt =
d In n/dt). The univariate model is

Nz = Nz—lexP(a + szfl + Ez) (1)

where a and b are constants, and E, has a normal dis-
tribution with a mean =0 and variance =o? [we write
E, ~ normal(0, 0?)]. The quantity E, represents a ran-
dom shock to the population growth rate caused by
unspecified stochastic forces. The shocks are assumed
uncorrelated through time. The population abundances,
though, are correlated through time under the model.
On a logarithmic scale, the model becomes

X, =X,_, +a+ bexpX,_) + E. 2)

Written in this form, the model is a first-order nonlinear
autoregression (NLAR) model (Tong 1990). In terms
of the growth increments, the model can be written as

Y=a+bN_, +E, (3)

The increment Y, is seen to be a linear function of
population abundance N,_, at the beginning of the time
interval, plus noise. In most applications, ecologists
will be concerned with values of b such that b = 0 (b
> 0 might be used to model an Allee effect at extremely
low densities). The model is a stochastic version of
Ricker’s (1954) discrete-time logistic model. Dennis
and Taper (1994) discuss the versatility and ecological
ramifications of this model.

A special case of the univariate model occurs when
b = 0. The model in that circumstance becomes a sto-
chastic model of exponential increase (a > 0), random
walk (a = 0), or exponential decline (a < 0). This
stochastic exponential growth case was used by Dennis
et al. (1991) for estimating extinction risks of endan-
gered species. A statistical test of the hypothesis b =
0 (density-independent growth) vs. b < 0 (density-de-
pendent growth) was developed by Dennis and Taper
(1994).

One of the main limitations of the model defined by
Eq. 1 is its univariate nature. Consider the population
fluctuations depicted in Fig. 1. Portrayed are the esti-
mated mean abundances of rangeland grasshoppers in
three broad physiographic regions of Montana (see
Kemp and Dennis 1993 for a map of the regions). From
the standpoint of forage utilization in Montana range-
lands, “‘grasshoppers’’ represent a functional group that
contains a number of serious pest species (Kemp
19924, b), and we shall refer to the group as a ‘““pop-
ulation” in this sense. Ecologically, the grasshopper
complex across Montana comprises =100 species, as
many as 20 or more of which can be found coexisting
in any given field (Kemp 1992a, b). The data in Fig.
1 are the total mean abundances for all species com-



428

25

a

!
201 I .

i
15 . /\,\
10 . | /\\ N .‘..
54, ‘.ﬂ,./ \,.f' i ,./\\ / ¢ \./-"
o] | oo, n/

T T T T T

50 55 60 65 70 75 8 85 90 95
25 b

20 1

15

1: A // -’/\»-_ /.h

0
50 55 60 65 70 75 80 85 90 95

Grasshopper density (no./m?)

20
15
[

10 \.\./.\

RN \,‘ /&
51 f [ ee%aq N °

R Vi \# WA oy Ao
0 1 ! I T T T T T 1 T

50 55 60 65 70 75 80 85 90 95

Year

FiG. 1. Mean adult rangeland grasshopper densities for
three physiographic regions of Montana, 1951-1993: (a)
northern glaciated plains, (b) southern unglaciated plains, (c)
western mountains. Data were described by Kemp and Dennis
(1993).

bined. The overall populations in Fig. 1 appear to be
fluctuating, albeit wildly, around some intermediate
abundance level. Kemp and Dennis (1993) have shown
that the univariate model (Eq. 1) separately describes
the three populations quite well, and can serve as a
valuable forecasting tool for rangeland managers.
However, it is obvious from Fig. 1 that the three pop-
ulations do not fluctuate independently of each other.
A good/bad year for grasshoppers on the southern un-
glaciated plains of Montana is likely to be a good/bad
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year on the northern glaciated plains, and vice versa.
Conclusions about density dependence or predictions
about outbreaks derived from statistical analyses of
each population separately using Eq. 1 are not likely
to be independent of each other.

A multivariate version of Eq. 1 is needed to account
for such cofluctuations. Many different multivariate ex-
tensions could be proposed; the following one strikes
a balance between realism and general usefulness. Let
the abundances of m different populations at time ¢ be
the elements of a column vector: N, = [N, N,, ...,
N,.]'. These elements could represent distinct, cofluc-
tuating species, or populations of the same species (me-
tapopulation). Let the log-transformed abundances be
arranged in a column vector defined by X, = [X,,, X,,

.y X,,)', where X;, = In N,. The column vector Y,
will hold the corresponding increments: Y, = X, —
X, 1. In the multivariate version, each population
grows according to its own stochastic logistic equation:

Ny = Ny_pexp(a; + bNy,_y, + E,). 4)

Here E;, ~ normal(0, o) as in the univariate case; the
multivariate version, however, allows for correlation
between the fluctuations of the populations within a
given time interval. Specifically, letE, = [E|, E,,, . . .,
E, ]’ denote the column vector of random shocks to the
logarithmic growth rates of the m populations in year
t. We assume that E, has a multivariate normal (MVN)
distribution with a mean vector of zero and a variance-
covariance matrix of ¥, where

o’ o Oim
2
O, 0,
s =17 . 5)
Ulm 0-mz

with o? denoting the variance of E,, and o; denoting
the covariance of E;, and E;,. We write E, ~ MVN(O0,
3). We assume that the elements in E, are not correlated
through time. We expect such autocorrelations to be
small compared to the within-time correlations, pro-
vided the underlying population trends are reasonably
well described by the logistic/Ricker model. These as-
sumptions can be evaluated for any given data set (see
Diagnostics and evaluation section).

The model can be written in matrix form on the
logarithmic scale. Letting D(N,) represent a matrix with
the elements of N, on the main diagonal and zeros
elsewhere, the m model equations (Eq. 4) can be ex-
pressed as

X, =X,,+a+DN,_)b +E, (6)

Here a = [a}, a5, . .., a,]' and b = [b}, b,, ..., b,]".
The model is a system of m stochastic difference equa-
tions, in which the populations are basically growing
separately, but the fluctuations in their growth rates are
coupled through the covariances of the elements in E,.
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Written in the form of Eq. 6, it is a type of multivariate,
nonlinear autoregression (MNLAR) model.

Population trajectories under this model are easy to
simulate. We describe this feature first, as it is a key
to convenient parameter estimation, hypothesis testing,
and joint-risk analysis (Parameter estimation, Diag-
nostics and evaluation, and Discussion sections). A ma-
trix-based programming language, such as GAUSS
(Aptech Systems 1993) or MATLAB (Math Works
1993) renders the programming effort almost trivial.
The steps for such simulation are as follows: (0) In this
initialization step, provide values for the elements of
a, b, and 3. (Methods for estimating these parameters
from data are presented in the Parameter Estimation
section.) Provide initial population sizes and arrange
them into the vector N, Calculate X, by log-trans-
forming the elements of N,. Factor the matrix 3 into
a product of an upper (T) and a lower (T') triangular
matrix:

S =T'T. @)

This factorization is called the Cholesky decomposition
and is a library subroutine in various matrix program-
ming languages. If the calculations are being performed
with a primitive language, one may use a simple al-
gorithm for the factorization (Graybill 1976:231, Press
et al. 1992:89). Once the factorization is completed,
the population time series are then generated as fol-
lows: (1) Generate m independent normal(0, 1) random
variables: Z = [Z,, Z,, ..., Z,]'. (2) Calculate the
vector of fluctuations, E,, as

E, = TZ. (8)

According to an elementary property of the multivar-
iate normal distribution, E, ~ MVN(0, 3) (Graybill
1976:98). (3) Use Eq. 6 to calculate X,. Exponentially
transform the elements of X, to obtain N,. (4) Repeat
steps 1-3 to obtain X, and N, from X, and N, etc.

The model (Eq. 6) represents a multivariate, sto-
chastic logistic model. It is a model of what we term
“joint density dependence.”” The populations cofluc-
tuate in a long-term statistical equilibrium. Each pop-
ulation has a return tendency centered at a point, —a,/
b; the conditional expected value of the logarithmic
change Y, ), given Ny,_;, = my,_,y, is positive if ny,_;,
< —a;/b; and negative if ny,_,, > —a,/b,. However, —a,/
b;, is not a point equilibrium. A point equilibrium is
not a well-defined concept in a stochastic model (Den-
nis and Patil 1984, Dennis and Costantino 1988, Wolda
1989, Kemp and Dennis 1993, Dennis and Taper 1994).
Each population also has its own scale of fluctuations
under the model. The diagonal elements, {c?}, in 3
measure the intensity of the random growth rate shocks
for the different populations. The off-diagonal ele-
ments, {o;}, measure the covariance of the growth rate
shocks between pairs of populations and can be positive
or negative.

A special case of the model is a multivariate, sto-
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chastic exponential growth model. By setting b = 0 in
Eq. 6, one obtains

X,=X,,+a+E, 9)

Under this model, each population on average expe-
riences exponential increase or decrease, depending on
whether its rate constant, a;, is positive or negative.
The fluctuations represented by E, retain the covariance
structure of the multivariate logistic. The special case
given by Eq. 9 can serve as a null hypothesis that all
the populations have density-independent growth rates,
to be tested against the alternative that some popula-
tions are density dependent (b #* 0).

PARAMETER ESTIMATION

Data for the multivariate stochastic logistic model
would consist of a time series of abundances for each
of the m populations. At each time ¢, the abundances
Ryp Ry - - - > N, (as censused, estimated, or indexed)
would be recorded. Let n, = [n,, n,, . .., n,]" be the
vector of recorded abundances at time #, and let X, =
[Inny, Inn,,...,Inn,]". Also, lety, = [In(n,/ny,_),
In(ny, /1), « .+, In(ng/ny,_1))]’. The series of vectors
n,, n,, ..., n, constitute a multivariate time series of
length ¢ + 1.

Data and model are connected through a likelihood
function. The likelihood function gives the relative
chance that a realization of the multivariate stochastic
process N,, with starting point fixed at n,, would result
in the outcome n,, m,, ..., n, that was actually ob-
served. The likelihood function is built from the tran-
sition probability density function (pdf), that is, the pdf
for N, conditional on n,_,. Because of the autoregressive
nature of the model on a logarithmic scale (Eq. 6), it
is easiest to work with the transition pdf for X,. From
Eq. 6, the distribution of X, given X, , = x,_, is
MVN(,_, + a + D(n,_))b, 3). The multivariate normal
transition pdf can be written as

pxIx._) = [Z[72@m) "
X exp[—(x,— X,_;, —a—D(n,_)b)’
X %71(x,— X,_, —a—D(n,_,)b)/2].
(10)

The likelihood function is the product of transition
pdf’s, that is, the probability of a transition from x, to
X;, times the probability of a transition from x; to X,,
and so on:

L(a, b, ) = p(x;|X)p(X,|x)) - - - p(x,]x,-).(11)

The likelihood function is denoted L(a, b, ¥) to em-
phasize its dependence on the unknown parameters in
a, b, and . In calculations, the log-likelihood function,
In L(a, b, 3) is typically used:
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q
InL(a, b, %) = > Inp(x,|x,_,)
t=1

—(mq/2)In(2m) — (g/2)In|Z|
q

- (1/2) D, [y,—a—D(@, )b]'S"!
=1

X [y,—a—D(n,)b]. (12)

Maximum likelihood (ML) estimates are the values
of the unknown parameters that jointly maximize L(a,
b, 3). In the Appendix, we derive the equations listed
below which yield the ML estimates as solutions. The
solutions must be calculated iteratively; we describe
below two easy methods for calculating the ML esti-
mates. In the formulas, we use the following notation:

y: [)_)la )—)2’.-',)—)"‘]/ (13)
= [A,A,,...,A4,] (14)
where y, is the sample mean of y;;, ys, . . ., i and 7

is the sample mean of ny, n,, . . ., 1, (note starting
point at ¢ = 0 and stopping point at t = g — 1). The
ML estimates of the parameters in a, b, and 3 are
solutions to the following equations:

-1

b= i D@, — B3 'D(m,_, — @) (15)
=1
(I A
X E D@, , - B2 '(y, — ),
a=y— D®@b (16)
3 = RR'/q. (17

In Eq. 17, the matrix R is a matrix of “residuals,” that
is, a matrix of the deviations of the log-population sizes
in X, from their estimated conditional expected values.
Specifically

é, &, ... &,

e e ... b

R = 2 (18)
€n1 € .. Epy

where é, = x, — X;,_1, — 4; — bny,_,, is the residual of
the ith population at time # (x,, minus its predicted val-
ue).

One easy way of calculating the solutions to Egs.
15-17 is suggested by the structure of the formula for
b. If 3 were a known matrix, then Eq. 15 is in the form
of a weighted least squares estimate. If an initial ap-
proximation for 3 could be found, then approximations
for b and 4 could be calculated from Egs. 15 and 16.
These approximate values for b and a could then be
used to calculate a better approximation for 3, through
Eq. 17, and the whole process repeated iteratively until
convergence. This ‘‘iteratively reweighted least
squares” algorithm (Green 1984) has the following
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specific steps: (1) Calculate initial values of 4 and b
using Egs. 15 and 16, with 3, taken as an identity matrix
(ones on main diagonal, zeros elsewhere). These initial
values of 4 and b are known as “conditional least
squares’’ (CLS) estimates (Klimko and Nelson 1978,
Dennis et al. 1995) and are usually close to, the final
ML estimates. Calculate the initial value of 3, through
Eq. 17, using the CLS estimates for & and b. (2) Cal-
culate new values ofAf) and & using Egs. 15 and 16 and
the latest value of 3. Calculate the new value of 3
using Eq. 17 and the latest values of & and b. Repeat
step 2 until convergence. At each iteration, calculate
the log-likelihood function (Eq. 12). Convergence is
attained when the relative increase in the log-likelihood
is small enough (say, [In L, — In L, ,}/[In L, ,| < 101,
where In L; is the value of the log-likelihood at the jth
iteration) and when the relative change in the parameter
values is small.

A second easy way of obtaining the ML estimates
is to maximize the log-likelihood directly using the
Nelder-Mead simplex algorithm (Press et al. 1992:402).
The algorithm only requires a routine to calculate the
function being maximized (i.e., Eq. 12); full computer
code and explanations for this surprisingly simple rou-
tine are provided by Press et al. (1992). Because Eq.
17 provides the ML estimate of the matrix 3, one need
only use 4 and b as the unknown quantities in the
function being maximized. Use Eq. 17 in place of X
in the log-likelihood during the iterations, with the re-
siduals (Eq. 18) calculated using the current values of
4 and b.

For the special case of the multivariate exponential
growth model (Eq. 9), the transition pdf is given by
Eq. 10, with b = 0. The likelihood function, Ly(a, %),
for the parameters in a and ¥ is then given by Eq. 11,
evaluated at b = 0:

Lya, ) = L(a, 0, 3). (19)

The ML estimates of a and ¥ under the multivariate
exponential growth model jointly maximize Ly(a, 3).
The estimates are easy to calculate; the following for-
mulas are derived in the Appendix:

a-=y, (20)
3 = RR'/q. 1)
Here, the matrix R is given by Eq. 18, but with &, =

X = Xig-y — & = Yi = Vi

HyPOTHESIS TESTING AND MODEL IDENTIFICATION

Various statistical analyses can be used to study the
structure of the model and to evaluate its performance
for a given data set. We describe in this section tech-
niques for hypothesis testing and model selection.

The hypothesis of density dependence becomes a
multivariate concept when two or more populations are
fluctuating in a statistically dependent fashion. Con-
clusions about one population will be related to con-
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clusions about another population. Various different
model structures have different degrees of density de-
pendence: the model could have zero populations grow-
ing logistically, one population growing logistically,
and so on.

One decision in population data analysis is whether
the joint density dependence model is a significant im-
provement over the joint density independence model.
The decision can be formally stated as a statistical hy-
pothesis test of the null hypothesis Hy: b, = 0, b, = 0,

., b,, = 0 vs. the alternative hypothesis H;: b, # 0,
b, #0,...,b, # 0. The null hypothesis is an assertion
that the time series of all populations in the group are
adequately described by the multivariate exponential
growth model, with some populations perhaps increas-
ing, others decreasing. The alternative hypothesis states
that the populations are better described by a multi-
variate stochastic logistic model.

The parametric bootstrap likelihood ratio (PBLR)
procedure is a numerically intensive method of testing
H, vs. H,. The advantages and limitations of PBLR
tests have been discussed by Dennis and Taper (1994).
The following PBLR test is a multivariate extension of
Dennis and Taper’s univariate PBLR test for density
dependence.

The multivariate PBLR test revolves around a sta-
tistic, denoted A, known as the likelihood ratio (LR)
statistic. The LR statistic is the ratio of the likelihood
function Ly(a, ) (Eq. 19) maximized under the null
hypothesis, and the likelihood function L(a, b, %) (Eq.
11) maximized under the alternative hypothesis:

= Ly(a,, 2)/LA, b, 2). (22)

Here 4, and 20 are the ML estimates (Eqs 20 and 21)
under the null hypothesis model, and 4, b, 3 are the
ML estimates (Egs. 15, 16, and 17) under the alter-
native hypothesis model. Any monotone function of A
can be used for the LR test; a frequently used function,
—2 In A, reduces algebraically to a fairly simple form
involving matrix determinants (the Appendix):

G* = —21n A = ¢ In(IZJI2).

If G?is large (i.e., A is small), the alternative hypothesis
is favored; if G2 is small (A is large), the null hypothesis
is favored.

The statistical distribution of G? is unknown. For
many time series models, G? has an approximate chi-
square distribution under the null hypothesis (see Tong
1990). However, the theorems giving the chi-square
distribution do not hold for testing the particular null
hypothesis b = 0, because the model under the null
hypothesis does not have a stationary distribution
(Tong 1990).

Instead, the distribution of G? under the null hy-
pothesis can be estimated by simulation (parametric
bootstrap). The steps for conducting the PBLR test of
the joint density independence model (H,) vs. the joint
density dependence model (H,) are as follows: (0) Ob-

(23)

JOINT DENSITY DEPENDENCE

431

tain ML parameter estlmates for both the null and al-
ternative models (4,, 20, i, b, 2) Calculate the Cho-
lesky decomposition of qE,J(q - 1): qEO/(q - 1) =
1 (the g/(q — 1) term is a bias correction). Calculate
G? (Eq. 23). (1) Starting at the observed initial popu-
lation sizes (m,), generate a multivariate time series
from the null hypothesis model (Eq. 9) using 4, for a
and T’ for T'. The simulated time series should have
the same number of observations as the data: n,, n,*,
n,*, ..., n* (2) Calculate ML parameter estimates
for both the null and alternative models with the sim-
ulated data (8,*, 3*; 4*, b*, 2%). This step requires
iterative ML calculations for the alternative hypothesis
model. Calculate by substituting 2,* and 2* in Eq. 23.
(3) Repeat steps 1-2 at least 2000 times, thereby ob-
taining thousands of G?* values. (4) Calculate the es-
timated P value of the test, denoted, P, as the proportion
of the G** values that exceed G2 (5) Reject H, if Pis
less than a selected critical value (such as 0.05).

The hypothesis of correlation among populations can
also be studied with a PBLR test. Investigators could
use such a test to determine whether a multivariate
approach to modeling the populations was necessary,
or whether the populations were essentially fluctuating
independently. The null hypothesis of the test is that
3 is a diagonal matrix. That is, Hy: 0, = 0, 4, j = 1,
2,...,m, i #j, where o, is the covariance of the noise
terms E; and E; in the model (Eq. 4). The alternative
hypothesis is that all population pairs have growth rate
fluctuations that covary. That is, H;: o, # 0, i, j = 1,
2,...,m, i # j. Generally, the base model for this test
should be the multivariate logistic (Eq. 6) rather than
the multivariate exponential (Eq. 9), because the ex-
ponential is included in the logistic as a possible case.

Under the null hypothesis of no correlations, the ML
estimates of a and b do not require iterative calcula-
tions. The ML estimates are identical to CLS estimates
and are found from Egs. 15 and 16 with an identity
matrix substituted for X,. Under the null hypothesis, the
ML estimates of the parameters in 3, are the diagonal
elements of 3 (Bq. 17): 62 = (6,2 + &2+ ... + &)/
q. The ML estimates of a, b, and %, under the alternative
hypothesis are calculated in the usual iterative fashion
(Egs. 15-17). The LR statistic G* is then calculated
with Eq. 23.

To conduct the PBLR test of Hy: o = 0, i # j, vs.
H;: 0; # 0, i # j, one carries out the steps zero to five,
described earlier for the density dependence test, with
the new null hypothesis model and parameter estimates
substituted throughout. In step zero, the Cholesky de-
composition is simplified, because the estimate of the
matrix 3, under the null hypothesis is diagonal. Simply
calculate T’ = D([6,, 6>, . . . , 6,,]) and then calculate
the noise vectors in step one with the expression E =
Tz (Eq. 8). In step one, the bootstrap time series are
generated from the logistic (Eq. 6), using parameters
estimated under the null model.

Frequently, a mix of different model structures will
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be of interest. Some populations might be growing or
declining, while others might be stationary. Or, the fluc-
tuations of some populations might be correlated, while
those of other populations are not. The previously de-
scribed hypothesis tests do not indicate which param-
eters in b or 3 are nonzero.

Classical hypothesis testing methods of statistics are
not well suited to the problem of identifying which
parameters among many should be included in a model.
For instance, suppose there are four populations. If one
or more parameters in b are nonzero, there are 15 pos-
sible combinations of zero and nonzero parameter val-
ues, meaning 15 possible models from which to choose.
A statistical hypothesis test only chooses between a
pair of models (or model classes) at a time. Sequential
pairwise testing schemes do not necessarily converge
to the best model, and are impractical if the tests must
be bootstrapped.

Instead, various model selection indexes have been
devised for choosing among many candidate models.
We find that the Akaike Information Criterion (AIC)
has intuitive appeal for sorting out different substruc-
tures in the multivariate stochastic logistic model. The
AIC is a model selection index consisting of the max-
imized likelihood penalized for the number of param-
eters included in the model (Akaike 1973, Sakamoto
et al. 1986):

AIC = —21In L + 2p. (24)

Here L is the maximized likelihood function, and p is
the number of parameters in the model estimated from
the data. A bias adjustment suggested by Bozdogan
(1987) resulted in the consistent AIC (CAIC) defined
by

CAIC = —21In L + p[(n ¢) + 1] (25)

where g is the number of observations (or time steps
in a time series model). The procedure is to select the
model with the lowest CAIC out of a parametric family
of models. If the ‘‘true’” model is contained in the
family (or is well approximated by one of the family
members), the CAIC procedure provides an (asymp-
totically) unbiased and consistent procedure for esti-
mating the true model.

For the multivariate stochastic logistic model, the
CAIC can be written as (see the Appendix)

CAIC = mg[l + In2m)] + ¢q In|2| + p[(n ¢) + 1].
(26)

The CAIC for the /th sub-model would be

CAIC, = mg[l + In@2m)] + ¢ In|2| + pl(n g) + 1]
27

where ﬁ), is the estimated variance-covariance matrix
of the fluctuations in submodel /. To choose among,
say, 15 models (all models of four populations for
which one or more parameters in b is nonzero), ML
estimates are calculated for all 15 models. Those pop-
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ulations in a given model growing exponentially have
values of b; set to zero in the log-likelihood function
(Eq. 12); maximizations can be accomplished with the
Nelder-Mead algorithm. The model with the smallest
value of CAIC,, according to this information criterion,
represents the best balance of parsimony and data de-
scription out of the 15 candidates. An informal rule of
thumb is that one can be indifferent about models for
which the AIC or CAIC values differ by <2 (Akaike
1973).

Analysis of covariance structure in the noise vector
proceeds along similar lines. CAIC values would be
calculated for models with different combinations of
covariances in ¥ fixed at zero. The estimate ¥, in Eq.
27 is calculated using residuals (Eq. 18), except with
the appropriate entries in the matrix set equal to zero.
The value of p must reflect only parameters estimated,
and so should be reduced by the number of parameters
(covariances) in ¥ set to zero.

DIAGNOSTICS AND EVALUATION

The multivariate stochastic logistic model must be
used cautiously, like other more familiar types of mul-
tivariate analyses. In particular, as in other multivariate
models, parameters proliferate rapidly as variables are
added. With m populations being described, the mul-
tivariate stochastic logistic model has m(m + 5)/2 pa-
rameters. For instance, to model just four populations
takes 18 parameters. With small sample sizes, the es-
timates of those parameters will have large standard
errors, and tests concerning those parameters will have
low power. Ecological circumstances might sometimes
permit the use of a model substructure with fewer pa-
rameters, such as a constant covariance parameter for
all population pairs, or a covariance that declines geo-
metrically as a function of distance between popula-
tions. A reduced-parameter model might be the only
practical solution when the populations are too nu-
merous or the time series are too short.

Attention to diagnostic analyses is essential. The
model is a parametric model, and its strengths and fail-
ings in describing any given data set should be carefully
evaluated. Diagnostic techniques center on the model
residuals (Eq. 18). Let &, = [é,,, é,, - . . , é,,]' represent
the residuals of the m populations at time ¢ (¢th column
of the matrix R, Eq. 18). If the model fits well, then
€,, &, ..., &, should be, approximately, vector obser-
vations from a multivariate normal distribution.
Though the residual vectors are not independent, they
can be treated as approximately independent for pur-
poses of diagnostic screening (Tong 1990:323).

Each set of residuals for each population é,,, é,, . . .,
é,, for the ith population) should be plotted separately
and analyzed for autocorrelation and univariate nor-
mality. Tong (1990:323) reviews useful white noise
tests. A plot of residuals from each pair of populations
should reveal an elliptical cloud if the residuals from
the pair are bivariate normal. Multivariate normality of
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F1G. 2. Bull trout redd counts for four tributaries of the Middle Fork of the Flathead River, Montana, 1980-1993: (a)
Morrison, (b) Granite, (¢) Lodgepole, (d) Ole. Data were described by Rieman and Mclntyre (1993).

the residual vectors can be examined with methods
discussed by Cox and Small (1978) and Seber (1984:
148). A quick scan for multivariate outliers can be
performed by calculating the quadratic forms: s, =
/28,1 =1,2,...,q The values of s, should be
observations from an approximate chi-square distri-
bution (m df), and those values exceeding, say, the 95th
chi-square percentile should be studied carefully.
Statistical methods based on the normal model for
the noise vector are not necessarily robust to model
misspecification. If the true model is not normal, the
parameter estimates and hypothesis tests have unknown
statistical properties. The degree to which conclusions
based on the normal likelihood remain valid varies
from case to case. The consequences of fitting this mod-
el to data arising from other chance mechanisms have
not been studied. Investigators should therefore use the
analyses we have presented as they would use other
multivariate techniques: for exploratory purposes, for
data summarization, and for discerning structure and
patterns in complex, variable systems. Should the re-
siduals not seem sufficiently normal, hypothesis testing
can be attempted by using CLS parameter estimates
(known to be statistically consistent for a wider class
of models) combined with nonparametric bootstrap-
ping. This involves estimating the multivariate noise
distribution directly from the residuals using a non-

parametric technique. One such technique is simply to
sample residual vectors with replacement. The sampled
vectors are used as noise vectors for generating the
time series needed to estimate the distribution of G?
(or other test statistic) under a null hypothesis. Because
of the nonparametric nature of this suggested test, lon-
ger time series would be desirable.

ExXAMPLES

The two systems analyzed in this section illustrate
the range of uses of the model. One system involves a
functional group containing species that are serious ag-
ricultural pests; the other is a metapopulation facing a
risk of extinction. The grasshopper abundances in Fig.
1 are used by rangeland managers in three physio-
graphic regions of Montana as indexes of the regional
potential for local and large-scale grasshopper out-
breaks. The sampling program has been conducted an-
nually since 1951, with the exception of the years 1976,
1981, and 1982. The bull trout (Salvelinus confluentus)
data (Fig. 2) represent counts of redds (breeding sites)
recorded during 1980-1993 on four tributaries of the
Middle Fork of the Flathead River, Montana (see Rie-
man and McIntyre 1993). The rates of migration in
these two systems are unknown. The problems arising
from missing data, the use of abundance indexes, and
the lack of information about migration rates in the
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TABLE 1. Maximum-likelihood parameter estimates and diagnostic statistics for the multivariate stochastic logistic model
fitted to observations of grasshopper abundances in three regions of Montana: northern glaciated plains (NGP), southern
unglaciated plains (SUP), and western mountains (WM). Data were described by Kemp and Dennis (1993).

Region art b 5)§ Normality|| First ordery Second order#
NGP 0.519 —0.0886 0.370  0.214  0.127 0.85 (0.40) 0.03 0.37
SuUP 0.385 —0.0640 (0.726)  0.234  0.111 0.52 (0.60) 0.16 -0.06
WM 0.360 -0.0792 (0.483) (0.534) 0.186 0.23 (0.82) -0.08 -0.10

T3 X 1 vector of estimates given by Eq. 16.
$3 X 1 vector of estimates given by Eq. 15.

§ 3 X 3 symmetric matrix of estimates given by Eq. 17; correlations are given in parentheses below the main diagonal.
|| Lin-Mudholkar test statistic (and P value) for null hypothesis that residuals have a normal distribution (Lin and Mudholkar

1980, Tong 1990:324).

9 First-order autocorrelations of residuals. Critical value at 0.05 significance level is 0.33.
# Second-order autocorrelations of residuals. Critical value at 0.05 significance level is 0.33.

grasshopper and trout data sets are common in other
systems.

The multivariate stochastic logistic model fits the
grasshopper data well, according to diagnostic statistics
(Table 1). ML estimates of the parameters were cal-
culated by omitting transitions, that is, pairs of adjacent
observations (X,_;, X,), with missing observations from
the likelihood function [Eq. 11]. Thus, the 1975-1976,
1976-1977, 1980-1981, 1981-1982, and 1982-1983
transitions were omitted from the ML formulas [Egs.
15, 16, and 17]. The remaining 37 transitions none-
theless constitute a long time series by ecological stan-
dards. The residuals from each region (Eq. 18) do not
depart significantly from univariate normal distribu-
tions, according to the Lin and Mudholkar (1980) nor-
mality test (Table 1). Normal quantile—quantile plots
of the univariate residuals are highly satisfactory (Fig.
3). None of the multivariate residuals (quadratic forms:
s,) exceeds the 95th percentile of a chi-square distri-
bution with 3 df. First- and second-order autocorrela-
tions (Table 1) were estimated using those residuals
that were separated by one and two years, respectively.
No significant first- or second-order autocorrelation
was detected in the residuals for the southern ungla-
ciated plains or the western mountains regions (Table
1). Some detectable but small amount of second-order
autocorrelation was noted in residuals from the north-
ern glaciated plains region (Table 1).

The model parameter estimates indicate that the fluc-
tuations of grasshopper abundances in the three regions
are noticeably correlated (3, Table 1). A PBLR test
rejects the null hypothesis that ¥ is diagonal (Eq. 23,
G> = 40.5, P < 0.0001). Likewise, the CAIC values
for the null and alternative hypotheses indicate that the
off-diagonal parameters in 3, improve the model sub-
stantially (CAIC[null] = 202.9, CAIC[alternative] =
176.3). Thus, outbreaks and crashes tend to occur joint-
ly in the three regions. The strong synchrony between
the three populations suggests that grasshopper abun-
dances are influenced by environmental factors that op-
erate on a superregional scale. Precipitation and tem-
perature are obvious candidates for such factors and
have been implicated in various studies (Lockwood and

Lockwood 1991, Kemp and Cigliano 1994, Cigliano
and Kemp 1995).

The multivariate stochastic logistic model fits better
than the multivariate stochastic exponential growth
model, according to the PBLR test of joint density de-
pendence (Eq. 23; G? = 32.9, P < 0.0001). The CAIC
(Eq. 25) for the exponential model is much larger than
the CAIC for the logistic model (CAIC[O, O, 0] =
195.4, CAIC[1, 1, 1] = 176.3, where ‘0 indicates
exponential growth model and ““1”’ indicates logistic
growth model, for northern glaciated plains, southern
unglaciated plains, and western mountains, respective-
ly). The completely density-dependent combination (1,
1, 1) produces a sharp minimum among all possible
combinations of logistic and exponential models; the
second lowest is CAIC(1, 1, 0) = 181.3. The results
suggest that grasshopper abundances are in a state of
statistical equilibrium, in which the vector of abun-
dances have long-run behavior described by a trivariate
stationary probability distribution. The univariate
(marginal) stationary distributions for the three regions
resemble right-skewed gamma distributions (Kemp and
Dennis 1993).

The bull trout data are also well described by the
multivariate stochastic logistic model (Table 2, Fig. 4).
The residuals for all four subpopulations do not depart
significantly from normal distributions, and do not
show any significant first- or second-order autocorre-
lation (Table 2). None of the multivariate residuals (s,)
exceeds the 95th percentile of a chi-square distribution
with 4 df. The fluctuations of subpopulation abun-
dances appear correlated; the estimated correlations
range 0.265-0.656 (Table 2). However, a PBLR test of
whether or not 3 is diagonal is only marginally sig-
nificant (Eq. 23; G*> = 20.7; P = 0.067). The CAIC
values for the null (3 diagonal) and alternative hy-
potheses are very close (CAIC[null] = 99.5,
CAIC[alternative] = 100.2), suggesting that the sep-
arate and joint models are approximately equivalent in
overall quality.

The multivariate stochastic logistic model fits the
bull trout data better than the multivariate stochastic
exponential growth model, according to the PBLR test
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F1G. 3. Normal distribution quantile—quantile plots of re-
siduals resulting from fitting multivariate stochastic logistic
model to time series grasshopper abundances in three phys-
iographic regions of Montana: (a) northern glaciated plains,
(b) southern unglaciated plains, (c) western mountains. Axis
scales are in standard deviation units.

of joint density dependence (Eq. 23; G? = 36.1; P =
0.006). Indeed, the CAIC (Eq. 25) for the exponential
model is much larger than the CAIC for the logistic
model (CAIC[O, 0, 0, 0] = 122.0, CAIC[1, 1,1, 1] =
100.2, where ““0’’ indicates exponential growth model
and ““1” indicates logistic growth model, for Morrison,
Granite, Lodgepole, and Ole subpopulations, respec-
tively). Among all possible combinations of logistic
and exponential models, the completely density-de-
pendent combination (1, 1, 1, 1) produces a sharp min-
imum CAIC value, beating the next lowest combination
by >2 (CAICI[1, 0, 1, 1] = 104.0).
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DISCUSSION
Model extensions

The model can be expanded in various ways to make
it more applicable in specific situations.

First, the population growth functions can be made
more flexible. One candidate function to use as the base
growth model for each population is the ‘‘0-Ricker”
model (see Turchin 1991). Each term b,N,,_,, in Eq. 4
is changed to b[N,,_,]% where b, is a nonnegative pa-
rameter (i = 1, 2, ..., m). The linear density-depen-
dence expression in the exponential function of Eq. 4
becomes a nonlinear, flexible (concave up or down)
function of N;,_,,.

Second, environmental covariates can be incorpo-
rated. In one approach, the intercept parameters a; in
Eq. 4 can be written as linear functions of extrinsic
environmental factors prevailing in the time interval.
Such factors might include precipitation, temperature,
or even other species’ abundances. Elkinton et al.
(1996), for example, construct spatially explicit models
of gypsy moth populations in which a covariate was
the abundance of white-footed mice. Incorporating en-
vironmental covariates is one possible means of at-
tempting to identify the sources of covariation among
population growth rates.

Third, sampling variability can be accomodated
through a “‘state-space’ model (see Harvey 1989). In
one such approach, the observed log-abundance of the
ith population would not be X,, but rather X,, + sampling
error. A state-space model might offer improved de-
scription when the populations are estimated or in-
dexed, and when the variability resulting from sam-
pling is a substantial proportion of the overall vari-
ability.

Finally, migration can be included. We consider the
effects of migration in greater detail later in this Dis-
cussion.

The drawback of all these model extensions is the
added parameters. Parameters are costly in statistical
inference. The types of parameters described above will
typically be estimable only in special circumstances
when the data carry explicit information about the pro-
cesses involved. For instance, the 6 parameter in the
0-Ricker model is hard to estimate unless the popula-
tion displays transient dynamic behaviors far from
equilibrium (6 determines the location of the inflection
point in a deterministic sigmoid population trajectory).
In addition, state-space models often require long time
series to estimate properly, because the process vari-
ability and the sampling variability are difficult to dis-
entangle. Also, migration parameters are easier to es-
timate if most locations in the system are initially emp-
ty, as in models of the spread of an introduced species
(Matis et al. 1996, Lele et al. 1998). The joint density-
dependence model we have presented herein has nu-
merous parameters already, and for many situations it
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TaBLE 2. Maximum-likelihood parameter estimates and diagnostic statistics for the multivariate stochastic logistic model
fitted to bull trout redd counts in four tributaries of the Middle Fork of the Flathead River. Data were described by Rieman

and Mclntyre (1993).

A,

Tributary ar bt 38 Normality||  First order{ Second order#
Morrison 1.11 —0.0230 0.310 0.142 0.124 0.132 1.08 (0.28) 0.28 0.20
Granite 0.674 -0.0276 (0.644) 0.156 0.107 0.0823 1.15 (0.25) 0.26 0.24
Lodgepole 0.893 —0.0430 (0.542) (0.656) 0.169  0.0408 —0.20 (0.84) 0.10 0.10
Ole 0.874 —0.0284 (0.635) (0.557) (0.265) 0.140 —1.06 (0.29) 0.22 —-0.07

T4 X 1 vector of estimates given by Eq. 16.
4 X 1 vector of estimates given by Eq. 15.

§ 4 X 4 symmetric matrix of estimates given by Eq. 17; correlations are given in parentheses below the main diagonal.
|| Lin-Mudholkar test statistic (and P value) for null hypothesis that residuals have a normal distribution (Lin and Mudholkar

1980, Tong 1990:324).

9 First-order autocorrelations of residuals. Critical value at 0.05 significance level is 0.55.
# Second-order autocorrelations of residuals. Critical value at 0.05 significance level is 0.55.

is likely to represent a practical upper limit on com-
plexity.
Assessing joint risks

The joint density-dependence model proposed herein
can be used for assessing risks of attaining different
population levels, such as endangered levels or out-
break levels. Associated with every stochastic popu-
lation model is a set of first-passage distributions. A
first-passage distribution is the distribution of time it
takes for a population to reach some abundance level

3.5 1
25
1.5 ®

-

-0.5 ] 3
-1.5

-2.5 1 /
-3.5 1

-3.5

() ]

Expected

-25 -15 -05 05 15 25 35

3.5
2.5 1
1.5 e
0.5

-0.5 ] ('/

-1.5 °

_..25 3

._..3'5 J

-35

b

Expected

-25 -15 -05 05 15 25 35

Observed

v, for the first time, starting from some abundance level
vo. The level v, can be greater than or less than v,
depending on the problem under study; different values
of v, and v, lead to different first-passage distributions.
The basic procedure for estimating a first-passage dis-
tribution is first to estimate parameters in the stochastic
population model, and then to obtain by simulation the
first-passage distribution for the selected values of v,
and v,.

Many different first-passage distributions can be
defined for multiple populations. We list four ex-
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FiG 4. Normal distribution quantile—quantile plots of residuals resulting from fitting multivariate stochastic logistic model
to time series bull trout abundances in four tributaries of the Middle Fork of the Flathead River, Montana: (a) Morrison, (b)
Granite, (c) Lodgepole, (d) Ole. Axis scales are in standard deviation units.
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amples. Suppose v, is a vector (m X 1) of starting
abundances (one for each population), and v, is a
vector of target abundances. First, one can study the
univariate (marginal) first-passage distributions sep-
arately for each population. Second, one can study
the joint distribution of the m first-passage times.
Third, one can study the distribution of the smallest
first-passage time (time for the first population to
attain its target) or of the largest first-passage time.
Finally, one can study first-passage distributions for
the sum of the population abundances. Once param-
eters in the multivariate stochastic logistic model are
estimated, each of these first-passage distributions
can be estimated by computer simulation.

Ignoring covariances among subpopulations can
cause substantial errors in assessing the jeopardy of
metapopulations. Any kind of joint first-passage
property is affected by covariances (Goodman
1987a). In particular, under the multivariate sto-
chastic logistic model, positive covariances in 3, en-
hance the variability of the total (summed) popula-
tion size. The risk that the total size attains some
lower (or higher) target size within a fixed time is
therefore increased. Use of a diagonal matrix for 3
(that is, no covariances) would then underestimate
the risk of attaining the target.

P. J. den Boer (1968, 1981) suggested that, due to
the phenomenon of ‘“‘spreading of risk,”” population
persistence could increase with fractionation into
multiple populations. The spreading-of-risk hypoth-
esis asserts that the variability of the total population
is diminished because the fluctuations of the con-
stituent subpopulations tend to cancel each other out
in the sum. However, such cancellation occurs only
if increases in some subpopulations tend to be com-
pensated for by decreases in other populations, that
is, only if there are negative covariances in 3. Pos-
itive covariances (corresponding to increasing spa-
tial synchrony) decrease the expected lifetime of me-
tapopulations (Harrison and Quinn 1989, Gilpin
1990). Because subpopulations are often affected
similarly by region-wide environmental conditions
(droughts, extreme winters, and so on), it is likely
that positive covariances are more prevalent than
negative covariances in metapopulations or multiple
population systems. However, negative covariances
are possible if local habitats respond differently to
regional perturbations, or if migration between sub-
populations forms a substantial portion of the
changes in subpopulation sizes. Extensive data anal-
ysis with the multivariate stochastic logistic would
help determine what kinds of covariance patterns, if
any, are widespread.

Effects of migration

The multivariate stochastic logistic model docu-
mented here does not explicitly account for migra-
tion between subpopulations. The effects of ignoring
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migration can be negligible provided the uses of the
model are carefully delimited. First, the subpopu-
lation equilibrium abundances should be moderate
or large, not small. Births and deaths, as opposed to
migration, should be the dominant contribution to
the population growth rate. Some pooling of sub-
populations might be necessary to use the model in
some circumstances. At moderate to large abundance
levels, migration will typically represent only a mi-
nor portion of the growth rate (but see Stacey and
Taper 1992). Migration then becomes important
mainly for keeping the gene pool mixed and for al-
lowing subpopulations to rescue each other from ex-
tinction. Second, risk assessments ideally should not
extend to extinction levels of abundance. The lower
abundance level v, in the first-passage distribution
for any subpopulation should be set above levels at
which migration dominates the growth rate. The val-
ue v, might be set, for instance, at a level of critical
concern for policymakers. The practice of using
higher targets in viability analysis should be adopted
in any case even when using other models; at very
low abundance levels, Allee effects (Dennis and Patil
1984, Dennis 1989), extinction vortices (Gilpin and
Soulé 1986), and demographic accidents are likely
to rival migration in impacts (Goodman 1987b) and
complicate viability analysis. When investigators are
forced by policy or biological considerations to mod-
el metapopulations at low abundances, the likeli-
hood-based methods outlined in this paper might still
provide useful parameter estimates to other joint
population models that account for such impacts
(e.g., Stacey et al. 1997).
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APPENDIX

Here, we derive ML parameter estimates for the multivar-
iate stochastic logistic and the multivariate stochastic expo-
nential growth models (Eqs. 6 and 9). The formulas for the
likelihood ratio statistic (Eq. 23) and the consistent Akaike
information criterion (Eq. 26) follow directly from the der-
ivation. The derivation is greatly simplified by using the vec-
tor derivative notation widely used in statistical theory (e.g.,
Seber 1984).

We first briefly state three standard results about vector
derivatives that are used in our derivation. Let @ = [6,, 0,,
...,0,] beanm X 1 column vector, and let 4(0) be a scalar-
valued function of 0. The vector derivative, dh2(0)/90, is de-
fined as a column vector of partial derivatives:

Oh(0)/30 = [0h130,, dh/0,, . .., OK180,]".  (A.1)

The vector derivative is essentially the gradient of the func-
tion h(6), except with row and column distinctions of vectors
maintained. The first two results stem directly from Eq. A.1

(Seber 1984:530).
Result 1: For h(0) = ¢'6 = 0'c, where ¢ = [¢|, ¢3, .. .,
¢)’ is a column vector of constants:
0h(0)/00 = c. (A.2)

Result 2: For #(0) = 6'A0, where A is a symmetric matrix
of constants:

oh(0)/00 = 2A0.

The third result used in our derivation is proved in most
multivariate statistics theory texts (e.g., Seber 1984:523). In
the result, ‘“‘positive definite’’ refers to a symmetric matrix,

(A.3)

say A, for which 8’A6 > O for all nonzero vectors 6. Also,
tr[A] denotes the trace of the matrix A, that is, the sum of
the elements on the main diagonal of A.

Result 3: Let C and 3 be positive definite matrices. The

scalar function
g(2) = || + «[X'C] (A.4)
is minimized uniquely at % = C.

The ML estimates of a, b, and X jointly maximize the
likelihood function L(a, b, %) (Eq. 11), or equivalently, the
log-likelihood function In L(a, b, %) (Eq. 12). To maximize,
we first find the derivatives of In L(a, b, ) with respect to
a and b and set the derivatives jointly equal to zero. With
respect to the vector a, terms in the summation portion of
Eq. 12 are in the form

(c —a)yX-'(c — a)

=c¢'Yle—c¢'Y'la—adlc+ aXla (A.5)

where ¢ = y, — D(n,_)b is a column vector that does not
depend on a. The derivative with respect to a of a term in
the form of Eq. A.5 becomes, from Eqs. A.2 and A.3
3/da)c —a)'X ' (c—a)=0—3"'¢c — X lc+ 23 'a

= —23-l¢c + 23 'a. (A.6)

Thus, the derivative of In L(a, b, 3) with respect to a is
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dln L(a, b, 3)/0a

I

~(1/2) 2, {—2X"'[y,— D(n,_,)b] + 2% 'a}

(A7)

_1{:2-1 Ly:— D(“rwl)b]} —X"'qa.

Setting equal to zero, multiplying by X, and solving for the
ML estimate & in terms of b gives

(A.8)

a=(l/g Z Y. - [(l/m Z D(n, )|b

or identically, Eq. 16.
With respect to the vector b, terms in the summation portion
of Eq. 12 are in the form

(c — Db)'3-!(c — Db)
=¢'Ylc — ¢'3'Db — b'DX"'c + b'DX-'Db. (A.9)

Here ¢ = y, — a is a column vector that does not depend on
b, and D = D(n,_)) is a diagonal matrix. The derivative with
respect to b of such an expression is, from Eqgs. A.2 and A.3

(0/0b)(c — Db)'2-!(c — Db)
0 — (¢'3'D) — DX-'c + 2D3"'Db
= —2D%"'c + 2D3-'Db. (A.10)

The derivative of In L(a, b, %) with respect to b then becomes

dln L(a, b, 3)/ob = i {D(m,_)%"(y, — a)
t=1

= 2D(n,_ )3 'D(n,_b}. (A.11)
Substituting & (Egs. A.9, 15) for a, b for b, 5) for 3, and
setting dln L(a, b, %)/db equal to zero produces

4q

Z (D@, Ny, - §) + D@, HE!

=1

X [D(@R) — D@, )b} = 0. (A.12)

Here, ¥ and fi are the sample mean vectors defined by Egs.
13 and 14. By adding D(n)z Ny, — 9+ D@1y, — ¥y)
and D(n)E [D@{) — D(n,_,]b + D@2 [D(R) — D(n,_,)]b
to each term in the sum in Eq. A.12, we obtain
»+D@E(y, — 9

Z} {ID®, ) - D@IE'(y, -

+ D@2 [D@) — D(n,_)1b

~ [D@@,.) — D@IE[D(m,_,) - D@1} = 0. (A.13)

Note that (y, — ¥) and [D(h) — D(n,_,)], when summed from
t = 1tot = g become zero (deviations from average sum
to zero). Thus, Eq. A.13 reduces to

9 A
2‘ (D, ) - D@EIZ'(y,—~

q A A
- {}31 [D(m, ) - D@IZ![D(n, ) - D(ﬁ)]}b

9q

= 2 D, - ﬁ)i—l(yt -9

t=1

(A.14)

1=

- {}3 D@, , - DS DG, - ﬁ)]}f) =0

Solving for b yields
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9q. n ~1
b= {2 (D@, — W'D, - ﬁ)]}
=1

49 A
X 2 D@~ My, 9) (A.15)

=
or just Eq. 15.

The ML equation for 3 is found by rearranging the log-
likelihood function (Eq. 12), and by noting thata 1 X 1 matrix
equals its trace, that tr(AB) = tr(BA) when A and B are
conformable to the multiplications, and that tr(A + B) =
tr(A) + tr(B) (Seber 1984:517).

In the following, we write e, =y, — a — D(n,_))b:

InL(a,b,3)

4
—(mg/2)InQ2w) — (g/2)In[Z] — (1/2) >, e/Z e,
t=1

—(mq/2)In(27) — (¢/2)In|Z] — (1/2)

q
XD e le,)
r=1

—(mg/2)In(2w) — (g/2)In|Z]| — (1/2)
X i tr(X'ee])
t=1

= —(mq/2)In(2w) — (¢/)In|%]| — (1/2)

> (Slee] )}
t=1
= —(mgq/2)In@w) — (g/2)In[Z] - (1/2)

4q
*1(2 e,e:) :
=1

We see that In L(a, b, X) is maximized with respect to 3
when

X tr]

X | (A.16)

Inf2| + (1/g)tr] (A.17)

2"‘(i e,e{)] = In|X] + tr(Z-1C)

is minimized, where C = (1/g) X’ e,e,/. By applying the
previously quoted minimization result (see Eq. A.4), and by
substituting the ML estimates 4 and b, we find that the log-
likelihood is maximized at
A 9 A A
S = (l/g) 2 ly,~a-Dm,_)bl[y,~a—D(m,_)bl". (A.18)
t=1

An identical expression for S is given by Eq. 17.

For the multivariate stochastic exponential growth model
(Eq. 9), the log-likelihood function is In L(a, 0, 3):

In L(a, 0, ) = —(mq/2)In2w) — (¢/2)In|%] — (1/2)

q
X 21 (y, — ay2'(y, — a). (A.19)

P
This is identical to the log-likelihood of a series of indepen-
dent observations y,, y,, . . ., ¥, arising from a multivariate
normal distribution with a mean vector of a and a variance—
covariance matrix of %. Indeed, under the multivariate ex-
ponential model, the y,’s are increments of a multivariate
Brownian motion process with drift (see Dennis et al. 1991,
Dennis and Taper 1994) and are therefore independent ob-
servations from a multivariate normal distribution. Note that
the y,’s are not independent under the multivariate logistic
(Eq. 6).

ML estimates for the multivariate exponential model are
derived in a fashion similar to that of the estimates for the
multivariate logistic (set b = 0 in Egs. A.5, A.6, A.7, A.8,
A.16, A.17, and A.18). Because of the multivariate normal
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distribution of the y,’s, the derivation is well-known in sta-
tistics (e.g., Seber 1984:60) and yields Eqgs. 20 and 21.

The formulas for the likelihood ratio statistic (Eq. 23) and
the CAIC (Eq. 26) can be obtained from the rearranged ex-
pression for the log-likelihood, In L(a, b, %), of the stochastic
logistic model (Eq. A.16). The maximized likelihoods in G?
and the CAIC are found by substituting the ML estimates of
parameters for a, b, and 3 in Eq. A.16. If the ML estimates
were obtained under a hypothesized constraint (such as b =
0, or off-diagonal elements of X are zero), then the con-
strained parameter values are substituted in Eq. A.16 as well.
After substitution, the last expression in Eq. A.16 becomes
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InL(a,b, %) = —(mg/2)In(2m) — (g/2)In|2|
—(1/2)421 i é,é,’l
t=1
= —(mg/D)In@w) — (g/2)In[3)
— (12u[E13q)
= —(mg/2)In@m) — (@/)In|E] — (mg/2).  (A.20)

Here 2 and &, represent X and e, with ML estimates plus
constrained parameter values substituted. The formulas for
G? (Eq. 23) and CAIC (Eq. 26) result from Eq. A.20.



