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Abstract. Observation or sampling error in population monitoring can cause serious
degradation of the inferences, such as estimates of trend or risk, that ecologists and managers
frequently seek to make with time-series observations of population abundances. We show
that replicating the sampling process can considerably improve the information obtained from
population monitoring. At each sampling time the sampling method would be repeated, either
simultaneously or within a short time. In this study we examine the potential value of
replicated sampling to population monitoring using a density-dependent population model.
We modify an existing population time-series model, the Gompertz state-space model, to
incorporate replicated sampling, and we develop maximum-likelihood and restricted
maximum-likelihood estimates of model parameters. Depending on sampling protocols,
replication may or may not entail substantial extra cost. Some sampling programs already
have replicated samples, but the samples are aggregated or pooled into one estimate of
population abundance; such practice of aggregating samples, according to our model, loses
considerable information about model parameters. The gains from replicated sampling are
realized in substantially improved statistical inferences about model parameters, especially
inferences for sorting out the contributions of process noise and observation error to observed
population variability.

Key words: Breeding Bird Survey; density dependence; environmental noise; Gompertz growth model;
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space model; stochastic population model.

INTRODUCTION

The sizes of ecological populations are often estimated

rather than censused, producing variability in the

observed population abundances. This variability exists

over and above the random population fluctuations due

to environmental processes, and is variously termed

‘‘measurement error,’’ ‘‘sampling error,’’ or ‘‘observation

error.’’ A growing body of research has indicted

observation error in population monitoring as a cause

of serious degradation of the inferences, such as

estimates of density-dependence strength, population

trend, or extinction risk, that ecologists and managers

typically want to make with such data (Solow 1990,

2001, Shenk et al. 1998, Holmes 2001, Holmes and

Fagan 2002, Staples et al. 2004, Freckleton et al. 2006).

The degradation takes two main forms. First, if

observation error is not properly accounted for in the

statistical models of population growth, then the

estimates of model parameters (and functions of

parameters such as probability of extinction) can be

seriously biased. Second, if observation error is some-

how adequately incorporated into statistical population

models, then the observation variance and process

variance parameters can be nearly nonidentifiable and

difficult to estimate separately, producing ridge-shaped

likelihoods and large confidence limits (Dennis et al.

2006, Knape 2008).

‘‘State space’’ population models incorporating both

process noise and observation error have great potential

for improving population studies (de Valpine and

Hastings 2002, Clark and Bjørnstad 2004). The inferen-

tial approaches in previous applications of state-space

models have been largely Bayesian (e.g., Clark and

Bjørnstad 2004). Recent developments, both analytical

(Staples et al. 2004, Dennis et al. 2006) and computa-

tional (de Valpine 2003, 2004, Ionides et al. 2006, Lele et

al. 2007), are helping to make statistical inferences

possible for state-space models in the conventional

frequentist sense. However, the problem remains for

Bayesian and frequentist approaches alike that variabil-

ity due to observation error is often difficult to

disentangle from the natural population fluctuations

(process noise) in the time-series abundance data.

One idea for improving the information obtained in

population monitoring is to replicate the sampling
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process. Instead of one observation per time unit, the

sampling method would be repeated, either simulta-

neously or within a short time, at each sampling time.

Such replication could take such forms as another

transect of river snorkeled, another mark–recapture

sample conducted, another backcountry road driven and

spotlighted at night, or another night of light trapping.

Ideally, the replication would be designed to draw from

all sources of variability that go into the observation

error in the monitoring data. Although such replication

might potentially improve the information that can be

obtained from population monitoring, in fact such

replication is almost nonexistent in reported ecological

studies.

In a recent review of the sampling-error problem,

Freckleton et al. (2006) offered the idea of replicated

sampling and discussed results from two such studies in

which the sampling-error component could be estimated

separately. One was a study of shorebirds by Spearpoint

et al. (1988), who estimated the variability in counts

between two observers measuring the same populations

simultaneously, as well as long-term (1981–1988)

variability in numbers. The other was by Cunningham

et al. (1999) who analyzed replicated censuses of 65

species of Australian woodland birds. In these studies,

however, the sampling replication was a one-time study

and not a routine part of the long-term population

monitoring.

In a large study featuring many bird species, Link et

al. (1994) analyzed what they termed ‘‘within-site

variability’’ of bird-count data. They designed and

carried out replicated sampling at a variety of sites in

the North American Breeding Bird Survey (BBS;

Peterjohn 1994), and they constructed variance-compo-

nents models to estimate the amount of variability

attributable to sampling. They found that in at least 14

out of 98 species more than half of the variation in bird

counts was attributable to sampling variability. Howev-

er, like the studies by Spearpoint et al. (1988) and

Cunningham et al. (1999), the Link et al. (1994) study

did not encompass multiple years, so that combining the

information gleaned from the replicated sampling with

time-series modeling of population abundances is not

straightforward.

Indeed, we have not been successful in locating an

example data set in which the sampling process has been

intentionally replicated through time. Spatially distinct

populations have been sampled simultaneously, but such

datamustusually beused to estimate separateprocess- and

sampling-error parameters (albeit with possible covaria-

tionamong thepopulations).Yet, given thedegradationof

parameter estimation associated with the presence of

observation error, the idea of replicated sampling is

intriguing. After all, population monitoring consumes

much time, personnel, and resources of the agencies

involved; is the information thereby gained useful for its

intended purposes? How much can the information from

population monitoring be improved by replicating the

sampling procedures?

In this paper we introduce a state-space population

model featuring observations from replicated sampling.

The model can be used for analyzing replicated sampling

data and for studying the potential value of replicated

sampling in population monitoring. We modified an

existing time-series population model, the Gompertz

state-space model, to include replicated sampling. We

describe maximum-likelihood and restricted maximum-

likelihood parameter estimation for the model. Our

computer simulations of parameter estimation reveal

that substantial gains in parameter precision can be

obtained with replicated sampling; such gains can be

weighed by managers against the costs of the extra

sampling. Some sampling programs already have

replicated samples, but the samples are aggregated or

pooled into one estimate of population abundance; such

practice of aggregating samples, according to our

results, loses considerable information about model

parameters. We explain the appropriate statistical

procedures for using the model, and we provide an R

program for such use. We suggest that ecologists and

managers might find replicated sampling worthwhile to

undertake in a wide variety of settings.

METHODS

Replicated sampling model

We first briefly review the Gompertz state-space

(GSS) model for a single time series with unreplicated

observations. Additional details can be found in Dennis

et al. (2006). The GSS model takes a discrete-time,

stochastic Gompertz model to represent the density-

dependent growth of the population:

Nt ¼ Nt�1exp aþ b lnðNt�1Þ þ Et½ �:

Here Nt is population abundance at time t (t ¼ 0, 1, 2,

. . .), and Et ; normal(0, r2), with E1, E2, . . .

uncorrelated. The noise process Et represents environ-

mentally induced fluctuations in the logarithmic popu-

lation growth rate. The stochastic Gompertz assumes

population abundance is known without error, with the

random fluctuations being driven by ecological process-

es. The stochastic Gompertz forms the basis of density-

dependence tests (Pollard et al. 1987, Dennis and Taper

1994), models of multiple sites (Langton et al. 2002),

and models of multiple interacting species (Ives et al.

2003).

The GSS model further takes population abundance

to be estimated with error, with the estimated or

observed population Ot at time t given by

Ot ¼ NtexpðFtÞ

where Ft ; normal(0, s2), and F1, F2, . . . are

uncorrelated with each other and uncorrelated with E1,

E2, . . . . The lognormal error exp(Ft) is a model of

population estimation error under heterogeneous ob-
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serving or sampling conditions (Dennis et al. 2006). For

data analysis, the model cast on the logarithmic scale is

more convenient:

Xt ¼ aþ cXt�1 þ Et Yt ¼ Xt þ Ft

in which Xt¼ ln Nt, c¼ bþ 1, and Yt is an observed or

estimated value of Xt. It should be noted that Yt is an

unbiased estimate of Xt. The GSS model has four

parameters: r2 is the process-noise variance, s2 is the

sampling-error variance, c is inversely related to the

strength of density dependence, and a scales the

stationary mean (given by a/(1 � c)) of log-population

abundance (r2 . 0, s2 . 0,�1 , c , þ1, a . 0).

Data-analysis methods for a single time series using

the GSS model are based on a multivariate normal

distribution (see Dennis et al. 2006). Let Y0, Y1, . . . , Yq

represent the (random) values of Yt in successive times,

and let y0, y1, . . . , yq be a particular realization of the

process (i.e., the data). It can be shown that Y0, Y1, . . . ,

Yq have a joint multivariate normal distribution with a

mean vector and variance–covariance matrix that are

functions of the model parameters and time. The

probability density function (pdf ) for the multivariate

normal distribution of Y0, Y1, . . . , Yq can be decom-

posed into a product of univariate normal pdfs, with

each pdf conditioned on the previous history of the time

series. The likelihood function for the unknown

parameters a, c, r2, s2 becomes

Lða; c;r2; s2Þ ¼ f ðy0Þf ðy1 j y0Þf ðy2 j y0; y1Þ

3 � � �3 f ðyq j y0; y1; . . . ; yq�1Þ:

Here f(yt j y0, y1, . . . , yt�1) is a normal distribution pdf

with mean mt and variance v2
t that are calculated with

two simultaneous recursion equations containing the

parameters and previous observations:

mt ¼ aþ c mt�1 þ
v2

t�1 � s2

v2
t�1

ðyt�1 � mt�1Þ

2
4

3
5

v2
t ¼ c2s2 v2

t�1 � s2

v2
t�1

þ r2 þ s2:

If the process is assumed to be stationary when the

initial value y0 was recorded, then the recursions are

initiated at m0 ¼ a/(1 – c), v2
0 ¼ [r2/(1 � c2)] þ s2. If the

initial population, however, was far from equilibrium,

the recursions are initiated at m0 ¼ x0, v2
0 ¼ s2, with the

underlying initial population size x0 becoming another

unknown parameter. The recursions are a special case of

four matrix equations for conditional moments known

as the ‘‘Kalman filter’’ (for instance, Harvey 1993), used

for multivariate Gaussian time series. The parameter

values that jointly maximize the likelihood function are

the ML (maximum-likelihood) estimates. The maximi-

zation must be done numerically (SAS program given in

Dennis et al. [2006]).

A special case of the model representing density-

independent population growth occurs with c ¼ 1. The

model becomes a stochastic version of exponential

growth or decay, with process noise and observation

error (see Holmes 2001, Staples et al. 2004, Dennis et

al. 2006). The likelihood function for the density-

independent case is multivariate normal, but can be

calculated using the above Kalman recursion equations

with the value of c fixed at 1. Population abundance

under the density-independent model does not have

stationary behavior, so the recursions must be initiated

at m0 ¼ x0, v2
0 ¼ s2, with x0 treated as an unknown

parameter.

The extension of the GSS model to replicated

sampling is as follows. Suppose at sampling time t, the

sampling process is replicated pt times, producing

observations Y1t, Y2t, . . . , Yptt
. Denote by Yt the pt 3

1 column vector [Y1t, Y2t, . . . , Ypt
t
]0 of the observations

(as random variables) at time t, and denote by yt the pt3

1 column vector [y1t, y2t, . . . , yptt]
0 of the recorded

outcomes (data values) of the random variables in the

vector Yt at time t. The number of replications pt can

vary for different sampling times, but to apply the

methods reported here, pt must be at least 1 for each

sampling time. We write jt for a pt 3 1 column vector of

1’s, Jt for a pt 3 pt matrix of 1’s, and It for a pt 3 pt
identity matrix. The Gompertz state space, replicated

sampling (GSS-RS) model consists of the underlying

population process joined with a multivariate sampling

process:

Xt ¼ aþ cXt�1 þ Et Yt ¼ jt Xt þ Ft:

Here Ft is a pt 3 1 random vector having a multivariate

normal distribution with a mean vector of 0’s and a

variance–covariance matrix s2It. The form of the vari-

ance–covariance matrix corresponds to the assumption

that the observations at each sampling period are

independent replicates (given the value of Xt) with

constant variance s2. The elements in Ft are additionally

assumed to be uncorrelated through time and uncorrelat-

ed with Et.

Maximum-likelihood estimation

The basic result needed to form the likelihood

function is the joint distribution of Yt given Yt�1 ¼
yt�1, Yt�2 ¼ yt�2, . . . , Y0 ¼ y0. That distribution is a

multivariate normal (MVN) distribution, with a mean

vector mt and a variance–covariance matrix Vt that are

calculated recursively from the previous data, similar to

the univariate case. We write

Yt j Yt�1 ¼ yt�1;Yt�2 ¼ yt�2; . . . ;Y0 ¼ y0f g

; MVNðmt;VtÞ:

For this replicated sampling model, the Kalman

recursion equations do not simplify much, and all four

equations are needed:
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lt ¼ aþ c½lt�1 þ j 0 t�1u
2
t�1V�1

t�1ðyt�1 �mt�1Þ�

u2
t ¼ c2u2

t�1½1� u2
t�1j 0t�1V�1

t�1jt�1� þ r2

mt ¼ jtlt

Vt ¼ Jtu
2
t þ Its

2:

Here the recursions are started at l0 ¼ a/(1 – c), u2
0 ¼

r2/(1 – c2), m0¼ j0a/(1� c) for the stationary case, and

l0 ¼ x0, u2
0 ¼ 0 for the non-stationary case. The scalar

quantities lt and u2
0 are, respectively, the conditional

mean and variance of the underlying process Xt, given

the previous observations Yt�1 ¼ yt�1, Yt�1 ¼ yt�1, . . . ,
Y0 ¼ y0. The joint pdf for Yt given the history Yt�1 ¼
yt�1, Yt�1 ¼ yt�1, . . . , Y0 ¼ y0 is that of a multivariate

normal distribution with mean vector mt and variance–

covariance matrix Vt:

f ðyt j yt�1; yt�2; . . . ; y0Þ

¼ ð2pÞ�pt=2jVtj�1=2

3 exp � 1

2
ðyt �mtÞ 0V�1

t ðyt �mtÞ
� �

where mt and Vt are calculated from parameters and

observation history using the Kalman recursion rela-

tionships. In parallel with the univariate case, the

distribution of the initial observation vector Y0 is

multivariate normal, with mean vector m0 and vari-

ance–covariance matrix V0.

The likelihood function under the GSS-RS model is

formed as the product of the conditional multivariate

normal pdfs:

Lða; c;r2; s2Þ ¼ f ðy0Þf ðy1 j y0Þf ðy2 j y1; y0Þ

3 � � �3 f ðyq j yq�1; yq�2; . . . ; y0Þ:

The log-likelihood, used for the statistical calculations,

then becomes

ln Lða; c;r2; s2Þ ¼ � r

2
lnð2pÞ � 1

2

Xq

t¼0

lnjVtj

� 1

2

Xq

t¼0

ðyt �mtÞ 0V�1
t ðyt �mtÞ:

Here r ¼ p0 þ p1 þ � � � þ pq is the total number of

observations, and q þ 1 is the total number of times at

which the population has been sampled. The likelihood

function contains the additional unknown parameter x0
when the non-stationary assumption is used.

The recursion equations and likelihood function

under replicated sampling remain valid for the density-

independent case with c¼ 1. The recursions are initiated

at the nonstationary conditions l0¼ x0, u2
t ¼ 0, with x0

treated as an unknown parameter.

The likelihood function L(a, c, r2, s2) can be shown to

be that of a single multivariate normal distribution for

the vector formed by stacking the vectors y0, y1, . . . , yq
of observations. The above Kalman filter representation

represents a decomposition of that likelihood. The

multivariate normal distribution follows from linearly

transforming the Xt’s and Ft’s in the definition of the

Yt’s and is derived and displayed in the Appendix.

The ML estimates of unknown parameters for the

GSS-RS model are the values that jointly maximize the

likelihood function. There are no closed-form formulas

for such estimates, because the likelihood is too complex

for simple calculus maximization. Numerical optimiza-

tion routines available in R,MATLAB, and various other

computational software packages are easy to use (Ap-

pendix). Although the ML calculations for the univariate

GSS model can be performed with mixed-effects analysis

of variance programs (such as PROCMIXED in SAS; see

Dennis et al. 2006), there appears to be no such

computational resource for the GSS-RS model.

Restricted maximum-likelihood estimation

While ML estimates are asymptotically unbiased in

statistical theory, for random-effects models it is known

that ML parameter estimates can often retain a

substantial bias for seemingly large yet finite samples.

The recommended improvement of restricted maximum-

likelihood (REML) estimates has now become standard

practice (Searle et al. 1992). REML estimation trans-

forms the data linearly so as to remove the fixed-effects

parameters, leaving the variance components to be

estimated through the covariance structure of the

transformed data.

REML estimates are formed by using a linear

transformation of the observations that has as a mean

a vector of 0’s. The procedure eliminates uncertainty in

the estimate of the mean vector from the estimation of

the variance components; the information in the data is

concentrated toward estimating parameters in a vari-

ance–covariance matrix. One REML transformation of

the observations in replicated sampling can be defined as

follows. Multiply each element in the vector yt (t¼ 1, 2,

. . . , q) by pt�1 (the size of the previous vector), and then

subtract the sum of the elements in the previous vector

yt�1, that is,

wit ¼ pt�1yit � ðy1t�1 þ y2t�1 þ � � � þ ypt�1t�1Þ:

Let wt ¼ [w1t, w2t, . . . , wptt]
0. Then the transformed

observations in w1, w2, . . . , wq, stacked into a column

vector, are from a multivariate normal distribution with

a mean vector of 0 and a variance–covariance matrix

having elements that depend on the unknown parame-

ters (derived and displayed in the Appendix). Numerical

maximization is required but is straightforward with

matrix-based programming languages (Appendix).

ML estimates remain important, for calculating

confidence intervals based on profile likelihoods, and

for likelihood-based model selection. In particular,
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model selection with the Akaike information criterion

(AIC; Akaike 1973, Sakamoto et al. 1986) and its

variants requires maximized log-likelihood functions for

all the models under consideration, using the same data.

The likelihood used for REML estimates applies to the

transformed observations (wit’s) and is not comparable

to likelihoods for other models fitted to the untrans-

formed observations (yit’s).

We compared ML estimation and REML estimation

with computer simluation (see Simulations, below).

Disaggregating data

Although replication of samples might seem onerous

or prohibitively costly, it might not be in practice

depending on sampling protocols. In some situations

such replication might already have been accomplished

unwittingly, and no extra data need be collected. A not-

infrequent practice in population-monitoring studies is

to aggregate subsamples, say of areas or transect

portions, into one overall estimate of population

abundance. The subsamples may be legitimate repli-

cates. Other studies, such as the BBS in North America

or the Common Birds Census (CBC) in the United

Kingdom, feature simultneous estimates from spatially

separated samples of possibly the same populations.

Whether such samples can be considered replicates is a

scientific judgment to be made case by case, but if the

samples can be analyzed as replicates, considerable gains

in parameter estimation might be realized. The question

is, how much information about model parameters

might be gained by retaining and analyzing the

subsamples as replicated samples rather than aggregat-

ing them?

The GSS-RS model can be used to study the effects of

disaggregating data into replicated samples. Suppose for

example there are the same number, p, of samples each

sampling time, and suppose that the sample observa-

tions Y1t, Y2t, . . . , Ypt arise from a GSS-RS model with

parameters a, c, r2, and s2. With lognormal sampling

error, it would be natural to combine data on the

logarithmic scale in order to obtain an unbiased estimate

of Xt, and so we define the aggregated population

estimate as the sample mean of the log-abundances in

the subsamples:

Ȳt ¼
1

p

Xp

i¼1

Yit:

It is straightforward to show that Ȳ0, Ȳ1, . . . , Ȳq follow a

univariate GSS model with parameters a, c, r2, and

reduced sampling variance s2/p. Thus, parameter esti-

mates obtained with the disaggregated observations can

be contrasted with the estimates of the same parameters

obtained with the aggregated observations. We view

results of a computer simulation in the next section.

SIMULATIONS

Data sets simulated with the Gompertz state-space,

replicated sampling (GSS-RS) model show the striking

effects of sampling variability (Fig. 1). Each simulation

in Fig. 1 has two observations per sampling time. The

numerical values of the parameters a, c, r2, and s2 used
in the first simulation (Fig. 1A) were maximum-

likelihood (ML) estimates for a time series in the

Breeding Bird Survey, and so the values reflect an actual

field setting (see Dennis et al. 2006: Table 1 and Fig. 1).

The original time series, consisting of counts of

American Redstart (Setophaga ruticilla) at a BBS

location, had one observation at each sampling time.

The ML estimates suggest that the larger proportion of

the variability in the counts was due to observation

error; the estimate of the sampling-variability parameter

s2 is twice as large as that of the process variability

parameter r2. Although the simulated true population

abundances (solid line) show considerable variability,

the observations (circles) in the top panel of Fig. 1A are

by comparison widely scattered. Decreasing the value of

s2 to half of the value of r2 (Fig. 1B) reduces the

sampling-based scattering, but the graph still gives the

visual impression that observation error is obscuring the

population signal. The observations resemble the true

population abundances when the value of s2 is decreased
to one-tenth the value of r2 (Fig. 1C).

The likelihood functions for the univariate GSS

model tend to be narrow, ridge-shaped, and multi-

FIG. 1. Three simulated time-series data sets for the
Gompertz state-space model with replicated sampling. The
solid lines represent the underlying true population abundances;
circles are the sampled/estimated population abundances, with
two sampling replications each time period. Here r2, s2, c, and
a are the four parameters in the Gompertz state-space model:
r2 is the process noise variance, s2 is the sampling error
variance, c is inversely related to the strength of density
dependence, and a scales the stationary mean (given by a/[1 �
c]) of log(population abundance) (r2 . 0, s2 . 0,�1 , c ,þ1,
a . 0). Parameter values used were: (A) a ¼ 0.4, c ¼ 0.8, r2 ¼
0.1, s2¼ 0.2; (B) a¼ 0.4, c¼ 0.8, r2¼ 0.1, s2¼ 0.05; and (C) a¼
0.4, c¼ 0.8, r2¼ 0.1, s2¼ 0.01. In panel (A) the parameters are
maximum-likelihood estimates for an example time series in the
North American Breeding Bird Survey calculated by Dennis et
al. (2006).
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modal (Dennis et al. 2006: Fig. 3). The likelihood

shapes reflect the near-nonidentifiability of the param-

eters r2 and s2, that is, different combinations of r2

and s2 values produce nearly the same likelihood

function heights. Despite the similarity in likelihood

values these different parameter combinations can

represent profoundly different underlying population

dynamics. The Dennis et al. (2006) study reported that

such likelihood functions were common in simulations

of the GSS model, even with time-series lengths of 100

or more.

What can replicated sampling contribute to parameter

identifiability? Profile log-likelihoods for parameters of

the GSS-RS (replicated sampling) model suggest that

replicated sampling essentially fixes the estimation

problems (Fig. 2). The profile log-likelihoods in Fig. 2,

calculated using the simulated data plotted in Fig. 1A,

are unimodal and approximately parabolic. The para-

bolic shapes indicates that the distributions of the ML

estimates are nearly normal, suggesting that the

estimates are converging swiftly to the theoretical

asymptotic normal distributions (e.g., Pawitan 2001)

for ML estimates. The parabolic shapes also suggest that

the parameters are statistically identifiable. In addition,

the parabolic shapes render the ML estimates easy to

calculate with numerical optimization techniques. The

locations of the profile peaks are somewhat far from the

true values of the parameters, however, suggesting the

presence of a bias in the ML estimates. The bias likely

could be corrected with parametric bootstrapping

(Ospina et al. 2006) or penalized likelihood (Pawitan

2001); alternatively restricted maximum-likelihood

(REML) estimates can be used (simulations area

described later in this section). The R program in the

Supplement to this paper produces ML and REML

estimates as well as profile log-likelihood plots for the

GSS model; the program contains the example data and

reproduces the plots in Fig. 2.

How much information is gained toward parameter

estimation from replicated sampling? We calculated

profile log-likelihoods for the GSS model for two

simulated data sets, one set having 20 sampling times

(q ¼ 19 ¼ the number of sampling times minus 1) with

two replicated observations per sampling time, and the

other set having 40 sampling times (q¼ 39) with just one

replication per sampling time (Fig. 3). The data sets

conceptually represent the same amount of expended

sampling effort. The difference is striking. The longer

univariate time series (dashed line) produced wider

profiles with extra shoulders or maxima, while the

shorter time series with replicated samples (solid line)

produced profiles with regular parabolic shapes. Thus,

the same total sampling effort spent in replicated

sampling can produce better information about the

parameters in less time.

We simulated ML and REML estimation under

replicated sampling (Fig. 4). The simulations incorpo-

rated two replicate samples for each sampling time, with

lengths of 31 (q¼ 30; Fig. 4A) and 101 (q¼ 100; Fig. 4B)

sampling times. The 101 sampling times, while unreal-

istically long in current ecological research, allow

assessment of statistical convergence. The parameters

from Fig. 1A were used as reference values in the

simulations. In each simulation, 2000 data sets were

FIG. 2. Profile log-likelihoods (with maximized log-likelihood values subtracted) for the parameters a, c, r2, and s2 in the
Gompertz state-space model, calculated for a simulated data set having 31 sampling times (q ¼ 30 ¼ number of sampling times
minus 1), with two replicated observations per sampling time. Parameter values used in the simulation were a¼ 0.4, c¼ 0.8, r2¼
0.1, and s2¼ 0.2.
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generated from the GSS-RS model, and 2000 sets of

parameter estimates were obtained by fitting the model

(i.e., numerically maximizing the likelihood or restricted

likelihood) to the generated data. Each box plot depicts

2000 parameter estimates divided by the reference

parameter value, so that relative variability and bias

can be compared across different parameters.

For 31 sampling times, substantial median biases were

evident in the ML estimates of a and c (Fig. 4A). The

ML estimates of a were biased upward and were

substantially more variable than the ML estimates of

the other parameters. The ML estimates of c were biased

downward but had relatively small variability. The

biases in ML estimates of a and c persisted for 101

sampling times (Fig. 4B). It has been noted (Dennis et

al. 2006) that the GSS model is a type of random-effects

model, and ML estimation in such models often has

persistent finite-sample bias due to the dependence of the

observations. However, the near-parabolic shapes of the

log-likelihoods in the GSS-RS model (Fig. 2) indicate

statistical regularity and suggest that the biases could be

routinely corrected by bootstrapping. In addition, ML

estimates of certain functions or transformations of the

parameters in the GSS model, such as the stationary

mean a/(1 – c), turn out to be nearly unbiased (Dennis et

al. 2006).

REML estimates, in contrast to ML estimates, were

well centered. Little median bias was evident in REML

estimates of any parameters for either 31 sampling times

(Fig. 4A) or for 101 sampling times (Fig. 4B). The

variability of the REML estimates for 101 sampling

times was of course reduced from that of 31 sampling

times, although the relatively modest amount of

reduction seems disproportionate to the large increase

in sample size. Such slow gains from increasing sample

sizes are common in dependent data problems. The

greatest gains tend to occur by altering sampling

protocols, such as in the present case by taking two

samples instead of one at each sample time.

If samples have been aggregated into one population

estimate, what is the effect of disaggregating them into

replicated samples? Note that disaggregation is a much

different question than the question of whether to

undertake additional samples. Aggregating samples

holds out the promise of reducing the sampling

variability in a univariate time series; recall that the

sampling-variability parameter becomes s2/p (where p is

the number of samples in each sampling time) in the

GSS model. Can better parameter estimates instead be

obtained by disaggregating, that is, by simply analyzing

the data differently? We generated data under the GSS-

RS model, with two replicate samples per sampling time,

using the parameter values from Fig. 1A. Each of the

replicate sample pairs were then aggregated as sample

averages on the logarithmic scale, forming a univariate

time series. We compared parameter estimates obtained

by fitting the GSS-RS model (parameters a, c, r2, and

s2), to the replicated sampled with estimates obtained by

fitting the GSS model (parameters a, c, r2, and s2/p,
where p¼2) to the aggregated samples. Fig. 5 shows log-

profile likelihoods calculated for a, c, r2, and s2 under

both the GSS-RS (solid curves) and GSS (dashed

curves) approaches, for a representative simulated data

set. For each parameter, using the replicated samples

FIG. 3. Profile log-likelihoods (with maximized log-likelihood values subtracted) for the parameters a, c, r2, and s2 in the
Gompertz state-space model. The solid lines represent profiles calculated for a simulated data set having 20 sampling times (q¼19),
with two replicated observations per sampling time; the dashed lines represent profiles for 40 sampling times (q ¼ 39), with one
observation per sampling time. Parameter values used in the simulation were a ¼ 0.4, c ¼ 0.8, r2¼ 0.1, and s2 ¼ 0.2.
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and the full GSS-RS model produces steeper profiles,

indicating greater information in the data. In the cases
of a and c, the GSS-RS profiles are only slightly steeper.

Note, however, that the GSS profiles have ‘‘shoulders’’
indicating the possibility of another local maximum. The

shoulders in the GSS profiles for r2 and s2 are
pronounced. The GSS-RS profiles for r2 and s2 are
considerably steeper than the GSS profiles, showing that

disaggregating into replicated samples is especially
advantageous for sorting out the sources of variability

in population data. Fig. 5 and Fig. 3 portray different
concepts, although they look similar. While Fig. 3

contrasts taking one sample rather than two, the second
contrasts pooling two replicated samples rather than

keeping them disaggregated.

DISCUSSION

Improvement in inferences

Replicating the samples potentially offers a substan-
tial gain of information in return for the costs involved.

Disentangling sampling variability and process variabil-
ity in unreplicated time series is difficult (Dennis et al.

2006). Very long time series are necessary for clean
separation of the two variance components. The ridge-

shaped, multimodal likelihood functions require case-
by-case attention, and the analyses are hard to automate

for bootstrapping or processing multiple data sets.
Estimation of the other parameters in population

models, and functions of parameters, depends on
adequate estimation of sampling variability. Thus, the

inferences about the populations, such as whether they
are declining, growing, or stable, and whether changes in

the population processes have occurred, are degraded
without adequate information about the contribution of

sampling variability. In particular, estimates of first-
passage properties such as persistence probabilities in
population viability analysis are known to be sensitive to

sampling variability (Holmes 2001, Holmes and Fagan
2002).

Most noteworthy about our replicated-sampling
simulations was that they were numerically well

behaved. Even for 31 sampling occasions, the profile
log-likelihood functions were smooth and unimodal

(Fig. 2). The log-likelihood shapes indicate that repli-
cated samples contain sharper information for estimat-

ing the parameters, in particular for separating the
contributions of process noise and observation error.

Alternative model forms

Many alternatives to the Gompertz state-space,
replicated sampling (GSS-RS) model exist that could

accommodate replicated sampling. Alternative state-
space models would incorporate changes in either the

sampling component, or the population abundance
component, or both.

A state-space model could use, for instance, a Poisson
sampling model, in which counts Y1t, Y2t, . . . , Yptt at

time t arise from independent Poisson distributions,

each with mean kNt, where k is a parameter and the

underlying population abundance Nt is governed by

some stochastic population model. The probability of a

count y under Poisson sampling is given by

P½Yit ¼ y� ¼ e�kNt ðkNtÞy=ðy!Þ

for outcomes y¼ 0, 1, 2, . . . . An attractive aspect of the

Poisson model is that 0’s in the data are accommodated

as events having positive, even substantial, probability.

The Poisson model classically applies to sampling a

well-mixed laboratory microbial population and could

in some circumstances approximate the variability in

standard closed-population mark–recapture estimation,

FIG. 4. Box plots of maximum-likelihood (left) and
restricted maximum-likelihood (right) parameter estimates
divided by their true values, for the parameters a, c, r2, and
s2 in the Gompertz state-space model with replicated sampling,
calculated for 2000 simulated time-series data sets with (A) 31
sampling times (q ¼ 30) and (B) 101 sampling times (q ¼ 100)
and two replicated observations per sampling time. Data sets
were simulated using the parameter values from Fig. 1A. The
box plots show (bottom to top): minimum, 1st quartile, median,
3rd quartile, and maximum.
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transect sampling, or population indexes such as

sightings and light-trap captures. Ver Hoef and Frost

(2003) for instance develop a Poisson sampling model

for aerial surveys of harbor seals in Alaska, although

they do not connect the means with a population-

dynamics model. Muhlfeld et al. (2006) experimentally

demonstrated the validity of Poisson sampling to redd

(identifiable fish oviposition sites) count data.

However, many field situations are characterized by

heterogeneous sampling conditions leading to over-

dispersion in the observations. The lognormal sampling

component in the GSS-RS model is a model of

overdispersed sampling, but it is a continuous distribu-

tion in which 0’s are not allowable outcomes. An

alternative overdispersed sampling model for count data

is the negative binomial distribution. One formulation of

the negative binomial for state-space modeling takes the

probability of a count of y to be

P½Yit ¼ y� ¼ Cðaþ yÞ
Cðyþ 1ÞCðaÞ

Nt

Nt þ b

� �y b
Nt þ b

� �a

for outcomes y¼ 0, 1, 2, . . . , where a and b are positive

parameters and C(�) is the gamma function. This

negative binomial model differs from the above-men-

tioned Poisson sampling model by allowing k to have a

gamma distribution with probability density function

g(k)¼ baka�1e�bk/C(a). Link and Sauer (1998) apply the

negative binomial sampling model toward estimating

population trends in various Breeding Bird Survey time

series, although they do not describe the underlying

process with a dynamic population model.

Alternatives for the population-abundance compo-

nent include various forms of density dependence and

process noise, such as stochastic versions of the Ricker,

Beverton-Holt, theta-Ricker, or Hassell growth models

(Bellows 1981). While extensive analyses undertaken

with thousands of time-series data sets (Woiwod and

Hanski 1992, Zeng et al. 1998, Sibly et al. 2005, Brook

and Bradshaw 2006) have suggested that particular

model forms describe nature more often, none of these

analyses have adequately accounted for sampling

variability in the data. Certainly, no replicated sampling

studies are yet known that might allow careful

evaluation of different forms for both the sampling

component and the population-abundance component.

One potential advantage of some alternative models is

that the weak identifiabilities of the sampling and

process variabilities might be sidestepped. For instance,

if one can justify using the above Poisson sampling

model with k¼ 1, then an entire parameter is eliminated.

Similar structures can be built into process variability to

bypass its estimation (e.g., Sullivan 1992, Newman 1998,

Besbeas et al. 2002). However, such approaches if used

should be based firmly on the biological and method-

ological properties of the system at hand, and not

contrived for convenience. Too few parameters can be as

misleading as too many parameters, in that bias can be

large when models are misspecified.

Computing for alternative models

Alternative models to the GSS-RS, in which either the

population-abundance component or the sampling

component is altered, pose additional computing prob-

lems for parameter estimation. The essential problem is

that the likelihood function in such ‘‘hierarchical

models’’ (models with random components, in this case,

FIG. 5. Profile log-likelihoods (with maximized log-likelihood values subtracted) under replicated sampling (solid curves) and
under aggregation of replicates by averaging (dashed curves), for the parameters a, c, r2, and s2 in the Gompertz state-space model.
Data were simulated using 30 sampling times (q¼ 29), two replicated observations per sampling time, and parameters set at a¼0.4,
c ¼ 0.8, r2 ¼ 0.1, and s2¼ 0.2.
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population abundance Nt) is a multidimensional integral

that generally cannot be written down in closed form.

The Gompertz growth model and the lognormal

sampling model conveniently combine on the logarith-

mic scale to produce a multivariate normal likelihood,

but no such consolidation occurs for nonnormal models.

The recent ‘‘data cloning’’ algorithm (Lele et al. 2007) is

a promising method for calculating ML estimates in

hierarchical models, including state-space models. The

data cloning method re-directs the computer-intensive

Bayesian MCMC algorithms, ordinarily used for

calculating posterior distributions in Bayesian statistics,

toward calculating ML estimates and asymptotic

frequentist confidence intervals. Other frequentist ap-

proaches for state-space models (de Valpine and

Hastings 2002, de Valpine 2003, 2004, Ionides et al.

2006) are computer intensive as well. Alternatively, full

Bayesian inferences can be undertaken (see Clark and

Bjørnstad 2004), provided one understands the substan-

tial conceptual differences between the Bayesian and

frequentist approaches (Dennis 1996, 2004, Lele and

Dennis 2009). We point out that the references cited in

this subsection all contain numerically computed exam-

ples of alternative, realistic state-space models.

Correlated observations

Situations exist for which the observations in repli-

cated samples might be correlated. Some examples are:

(1) if each year a different observer performs the

sampling, but within each year replicated observations

receive a bias from that observer’s technique; (2)

observation conditions vary substantially from year to

year, but are similar for the within-year replicated

samples performed close together in time; and (3)

sampling protocols vary from year to year. The main

feature of such correlation is that a different sampling

bias is added each year essentially as a random effect. If

the replications are modeled as independent when

sampling correlation is present, the result could be

spuriously high accuracy in estimation. One potential

advantage of aggregation might be to avoid such

sampling correlation. Alternatively, the sampling corre-

lation could be modeled. Modeling correlation between

replicated samples is straightforward, but estimation has

not been studied. One might anticipate that difficulties

with parameter identifiability could arise. Investigators

at present should try to avoid sampling correlation by

designing the replications to avoid such within-year

biases. Ideally, all possible sources of variability in

sampling should be embodied in each replicate.

Concluding remarks

The importance of biological monitoring data cannot

be over emphasized. A high-quality data set recording a

population’s abundances, long-term, can be a canary in

the mine. The responses of ecological communities to

global climate change are projected to be large, fast, and

extensive (for instance, Rehfeldt et al. 2006). Protecting

species and communities from extinction, and sustaining

the ecological services derived by humans from the
earth’s biota, will require major modifications to human

economic activities. Policy decisions about economic
activities will hinge on the changes observed in
biological monitoring data and on the scientifically

inferred causes of those changes.
Yet, inadequate attention to the design of a monitor-

ing program risks losing the very signal that the program
exists to monitor. Ecologists now know, for instance,

that conventional ecological sampling methods can
contribute more than enough variability to cloud or

bias conclusions about population abundance and
dynamics. Replicating samples may be expensive or

not, depending on whether existing sampling designs can
be disaggregated. In either case sample replication

should be considered as a survey design issue where
the goal is to maximize the amount of useful informa-
tion gained within the constraints of allowable cost. As

managers, let us not waste money or the future of the
species in our charge. We suggest checking the canary

again, using replicated sampling.
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APPENDIX

Multivariate-normal likelihood function for replicated sampling (Ecological Archives E091-044-A1).

SUPPLEMENT

R program to calculate maximum-likelihood or restricted maximum-likelihood estimates of model parameters, as well as to
calculate and plot profile log-likelihoods, for the Gompertz state-space models with replicated sampling (Ecological Archives E091-
044-S1).
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Appendix A. Multivariate-normal likelihood function for replicated sampling. 

 Here we construct the multivariate-normal likelihood function for replicated 

sampling under the Gompertz state-space (GSS) model, for the stationary case.  The 

likelihood function allows maximum-likelihood (ML) estimation of model parameters 

through numerical maximization.  In addition, we obtain a multivariate-normal likelihood 

for use in obtaining restricted maximum-likelihood (REML) estimates with transformed 

observations. 

We assume the sampling process is replicated  times at sampling time t , 

producing observations , , ..., .  Denote by Yt the 

tp

tY1 tY2 tpt
Y 1×tp

t

 column vector [ , , 

..., ]′ of the observations (as random variables) at time , and denote by yt the 

t1Y tY2

1tpt
Y ×tp  

column vector [ , , ..., ]′ of the recorded outcomes (data values) of the random 

variables in the vector Yt at time t .  We write j for a column vector of ones, o for a 

column vector of zeros, J for a matrix of ones, O for a matrix of zeros, and I for an 

identity matrix, with the sizes determined by context (or clarified with subscripts, when 

necessary) so as to be consistent with the matrix operations.  The GSS model consists of 

the underlying population process joined with the multivariate sampling process: 

ty1 ty2 tpt
y

   ttt EcXaX ++= −1

 Yt  j  Ft  = +tX



where  ~  normal(0, ) and Ft  ~ MVN(ot , I), with Ft assumed independent of 

and ,  and no autocorrelation of the noise processes  and Ft.  Also, denote by X the 

 column vector [ , , …, ]′ , and denote by Y the 

tE

t

1)×

2σ 2τ tE  

X

1+

tE

(q 0X 1X qX 1×r  column vector 

( ) formed by stacking the vectors Y0, Y1, …, Yq .  Similarly denote 

by F the 

qpp ++1

1×

p=r +0

r  column vector formed by stacking the vectors F0, F1, …, Fq . 

ML estimation 

The essential idea is that X has a multivariate-normal distribution, and Y is the sum of F 

and a linear transformation of X .  First, a well-known property of the stationary AR(1) 

process Xt is that  

 X ~ MVN( j  , Σ )  ( ca −1/ )

with all the main diagonal elements of the variance--covariance matrix Σ equal to the 

stationary variance V ( ) ( )22 1/ cXt −=σ , and the other elements giving the stationary 

covariances CV ( ) ( )22 1/, ccXX s
stt −=+ σ   (see for instance, Dennis et al. 2006, Harvey 

1993).  Second, let a matrix C be defined by stacking column vectors of ones and zeros in 

the following manner:   

C  . 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

qqq joo

ojo
ooj

111

000

Here jt and ot are  (the size of yt ).  One can see that Y is a linear transformation of 

X : 

1×tp

 Y  CX  F . = +

Therefore,  



 Y ~ MVN( Cj  , CΣC′ + I ) . ( ca −1/ ) 2τ

The log-likelihood function for a vector of data y thus is the log-probability density for a 

multivariate-normal distribution:  

ln ( )22 ,,, τσcaL   =
2
r

− ln ( )π2  − 
2
1 ln|V| − 

2
1 ( )μ−y ′ V−1 ( )μ−y  , 

where V  CΣC′ + I , and = 2τ μ  is a 1×r  vector with all elements equal to  . ( )ca −1/

REML estimation 

A REML transformation of the observations in replicated sampling can be defined 

as follows.  Multiply each element in the vector yt, (t = 1, 2,…, q) by pt−1 (the size of the 

previous vector), and then subtract the sum of the elements in the previous vector yt−1, 

that is,  

  =  tiw ( )112111 1
... −−−− −
+++− tptttit t

yyyyp  . 

Because all the observations have the same mean (the stationary mean ), each 

 arises from a distribution with mean zero.  Let wt = [ , , ..., ]′ .  Then wt 

can be represented by 

( ca −1/

tpt
w

)

tiw tw1 tw2

 wt  pt−1 yt − jt jt−1′ yt−1 . =

Furthermore, let w be the vectors w1, w2, …,  wq  stacked into a column vector, and 

denote by W the random vector version (of which w is a particular realization).  Using 

the transformation matrix given by 

D    

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
−

−

=

− qqqqq

q

q
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IOO
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where J st , O st and I st are matrices, we establish that W = DY is a ( )  

vector that has a multivariate-normal distribution with a mean vector of zero and a 

variance--covariance matrix given by  Φ 

ts pp × 10 ×− pr

=  D[CΣC′ + I] D′ 2τ =  DVD′.  The restricted 

log-likelihood function for w is then:  

ln ( )22 ,, τσcL   =
2

0pr −
− ln ( )π2  − 

2
1 ln|Φ| − 

2
1 w′ Φ−1 w . 

The parameter a does not appear in the restricted log-likelihood.  The restricted log-

likelihood is maximized numerically over the values of the parameters c, , and .  

The parameter a is then estimated as  

2σ 2τ

 ( )
jVj'
yVj'

1

1

1 −

−

−= ca   

where everything on the right-hand side of the equation is evaluated at the REML 

estimates for c, , and . 2σ 2τ
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#           GOMPERTZ STATE SPACE WITH REPLICATED SAMPLING 
# 
#  GSS-RS model:  program to calculate ML or REML estimates & profile 
#  log-likelihoods.  The program assumes an equal number (p) of 
#  sampling replicates per sampling occasion. 
# 
#  The model is: 
#       X(t) = a + c*X(t-1) + E(t), 
#       Y(t) = j*X(t) + F(t). 
#  Here: 
#       X(t) is log-abundance of a population at time t 
#         (t=0,1,2,...,q). 
#       E(t) ~ normal with mean 0, variance ssq, and no  
#          autocorrelation. 
#       Y(t) is a pX1 vector of estimates of X(t) obtained by 
#          replicated sampling. 
#       j is a pX1 vector of ones. 
#       F(t) ~ multivariate normal with mean vector 0 (pX1) and var-cov 
#          matrix tsq*I, where I is a pXp identity matrix. 
#       a>0, ssq>0, tsq>0, -1<c<+1 are model parameters. 
# 
#  Be patient.  R is slow. 
 
#---------------------------------------------------------------------- 
#        USER INPUT SECTION 
#---------------------------------------------------------------------- 
#  User must supply initial parameter values here. 
a0=.4;             #  Value of "a" to be used. 
c0=.8;             #  Value of "c" to be used. 
ssq0=.1;            #  Value of "ssq" to be used. 
tsq0=.2;            #  Value of "tsq" to be used. 
 
#  User specifies number of sampling replicates here. 
p=2;     #  Number of replicates 
 
#  User provides data here.  Statements can be altered to input data 
#  from a file.  Result must be a pX(q+1) matrix YP.t, containing 
#  replicated observations (log-scale) as columns. 
O.t=c(24,24,9,14,10,18,7,9,9,13,13,10,5,3,13,4,10,4,5,7,3,10,5,9, 
  17,8,22,19,5,10,5,5,3,4,1,2,3,5,7,6,7,11,8,8,5,7,4,3,9,15,7,9, 
  14,24,3,6,6,7,11,10,8,9);  #  (24,24) are the observations at 
                             #    time 0, (9,14) are the observations 
                             #    at time 1, etc. 
qplus1=length(O.t)/p; 
q=qplus1-1; 
YP.t=matrix(log(O.t),p,qplus1,byrow=FALSE);  #  Columns are replicated 
                                             #    samples. 
 
#  User sets parameter intervals for profile plots and total 
#  number of horizontal axis increments here. 
aalo=0.4;     #  Low value of "a" 
aahi=1.9;     #  High value of "a", etc. 
cclo=0.1; 
cchi=0.8; 
ssqlo=0.1; 
ssqhi=0.4; 
tsqlo=0.1; 
tsqhi=0.21; 
nincs=100;   #  Number of increments for the profile plots. 
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#---------------------------------------------------------------------- 
#        PROGRAM INITIALIZATION SECTION 
#----------------------------------------------------------------------   
library(MASS);  #  loads miscellaneous functions (ginv, etc.). 
 
#  Sets parameter values for profile likelihoods. 
aavals=seq(aalo,aahi,by=((aahi-aalo)/nincs)); 
ccvals=seq(cclo,cchi,by=((cchi-cclo)/nincs)); 
ssqvals=seq(ssqlo,ssqhi,by=((ssqhi-ssqlo)/nincs)); 
tsqvals=seq(tsqlo,tsqhi,by=((tsqhi-tsqlo)/nincs)); 
 
#  These vectors will eventually hold the profiles. 
profileRS.aa=aavals; 
profileRS.cc=ccvals; 
profileRS.ssq=ssqvals; 
profileRS.tsq=tsqvals; 
 
#  Matrices for calculating multivariate normal likelihood for REML 
#  estimates. 
YP.reml=matrix(YP.t,p*qplus1,1);  #  Replicated samples "stacked" in a vector. 
J.p=matrix(1,p,p);          #  pXp matrix of ones. 
I.p=diag(qplus1);           #  (q+1)X(q+1) identity matrix. 
D.reml=kronecker(I.p,J.p);  #  kronecker product (block diagonal). 
I.temp=cbind(matrix(0,q*p,p),diag(q*p)); 
I.temp=rbind(I.temp,matrix(0,p,p*qplus1)); 
D.reml=-D.reml+2*I.temp; 
D.reml=D.reml[1:(q*p),];    #  This is the D transformation matrix 
                            #   for REML. 
WP.t=D.reml%*%YP.reml;      #  The REML-transformed observations. 
j.p=matrix(1,p,1);          #  pX1 column vector of ones. 
j.pXqp1=matrix(1,p*qplus1,1);  #  p*(q+1) X 1 col;umn vector of ones. 
C.ml=kronecker(I.p,j.p);    #  C matrix in the multivariate normal 
                            #    distribution of YP.reml. 
 
#  Log-likelihood for ML estimation. 
negloglikeRS.ml=function(theta,yt)   
{ 
   p=nrow(yt); 
   aa=exp(theta[1]);             #  Constrains a > 0.              
   cc=2*exp(-exp(theta[2]))-1;   #  Constrains -1 < c < 1. 
   sigmasq=exp(theta[3]);        #  Constrains ssq > 0.  
   tausq=exp(theta[4]);          #  Constrains tsq > 0. 
   q=ncol(yt)-1; 
   jj=matrix(1,p,1); 
   JJ=matrix(1,p,p); 
   Itausq=matrix(0,p,p); 
   diag(Itausq)=rep(tausq); 
   mu.t=aa/(1-cc); 
   psq.t=sigmasq/(1-cc*cc); 
   mm.t=jj*mu.t; 
   VV.t=JJ*psq.t+Itausq; 
   VVinv=ginv(VV.t); 
   lnf=(p/2)*log(2*pi)+0.5*log(det(VV.t))+ 
      0.5*(yt[,1]-t(mm.t))%*%VVinv%*%t(yt[,1]-t(mm.t)); 
   ofn=lnf; 
   for (tt in 1:q) 
   { 
      mu.t=aa+cc*(mu.t+psq.t*t(jj)%*%VVinv%*%t(yt[,tt]-t(mm.t))); 
      psq.t=cc*cc*psq.t*(1-psq.t*t(jj)%*%VVinv%*%jj)+sigmasq; 
      mm.t=jj*mu.t[1]; 
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      VV.t=JJ*psq.t[1]+Itausq; 
      VVinv=ginv(VV.t); 
      lnftemp=(p/2)*log(2*pi)+0.5*log(det(VV.t))+ 
         0.5*(yt[,tt+1]-t(mm.t))%*%ginv(VV.t)%*%t(yt[,tt+1]-t(mm.t)); 
      ofn=ofn+lnftemp; 
   } 
   return(ofn); 
} 
 
#  Log-likelihoods for profiles:  first the parameter "a" is 
#    fixed, then "c" is fixed, and so on. 
 
#  "a" is a vector of fixed values. 
negloglikeRS.a.ml=function(theta,parval,yt)   
{ 
   p=nrow(yt); 
   aa=parval;              
   cc=2*exp(-exp(theta[1]))-1;   #  Constrains -1 < c < 1. 
   sigmasq=exp(theta[2]);      #  Constrains ssq > 0.  
   tausq=exp(theta[3]);        #  Constrains tsq > 0. 
   q=ncol(yt)-1; 
   jj=matrix(1,p,1); 
   JJ=matrix(1,p,p); 
   Itausq=matrix(0,p,p); 
   diag(Itausq)=rep(tausq); 
   mu.t=aa/(1-cc); 
   psq.t=sigmasq/(1-cc*cc); 
   mm.t=jj*mu.t; 
   VV.t=JJ*psq.t+Itausq; 
   VVinv=ginv(VV.t); 
   lnf=(p/2)*log(2*pi)+0.5*log(det(VV.t))+ 
      0.5*(yt[,1]-t(mm.t))%*%VVinv%*%t(yt[,1]-t(mm.t)); 
   ofn=lnf; 
   for (tt in 1:q) 
   { 
      mu.t=aa+cc*(mu.t+psq.t*t(jj)%*%VVinv%*%t(yt[,tt]-t(mm.t))); 
      psq.t=cc*cc*psq.t*(1-psq.t*t(jj)%*%VVinv%*%jj)+sigmasq; 
      mm.t=jj*mu.t[1]; 
      VV.t=JJ*psq.t[1]+Itausq; 
      VVinv=ginv(VV.t); 
      lnftemp=(p/2)*log(2*pi)+0.5*log(det(VV.t))+ 
         0.5*(yt[,tt+1]-t(mm.t))%*%ginv(VV.t)%*%t(yt[,tt+1]-t(mm.t)); 
      ofn=ofn+lnftemp; 
   } 
   return(ofn); 
} 
 
#  "c" is a vector of fixed values 
negloglikeRS.c.ml=function(theta,parval,yt)   
{ 
   p=nrow(yt); 
   aa=exp(theta[1]);           #  Constrains a > 0. 
   cc=parval; 
   sigmasq=exp(theta[2]);      #  Constrains ssq > 0.  
   tausq=exp(theta[3]);        #  Constrains tsq > 0. 
   q=ncol(yt)-1; 
   jj=matrix(1,p,1); 
   JJ=matrix(1,p,p); 
   Itausq=matrix(0,p,p); 
   diag(Itausq)=rep(tausq); 
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   mu.t=aa/(1-cc); 
   psq.t=sigmasq/(1-cc*cc); 
   mm.t=jj*mu.t; 
   VV.t=JJ*psq.t+Itausq; 
   VVinv=ginv(VV.t); 
   lnf=(p/2)*log(2*pi)+0.5*log(det(VV.t))+ 
      0.5*(yt[,1]-t(mm.t))%*%VVinv%*%t(yt[,1]-t(mm.t)); 
   ofn=lnf; 
   for (tt in 1:q) 
   { 
      mu.t=aa+cc*(mu.t+psq.t*t(jj)%*%VVinv%*%t(yt[,tt]-t(mm.t))); 
      psq.t=cc*cc*psq.t*(1-psq.t*t(jj)%*%VVinv%*%jj)+sigmasq; 
      mm.t=jj*mu.t[1]; 
      VV.t=JJ*psq.t[1]+Itausq; 
      VVinv=ginv(VV.t); 
      lnftemp=(p/2)*log(2*pi)+0.5*log(det(VV.t))+ 
         0.5*(yt[,tt+1]-t(mm.t))%*%ginv(VV.t)%*%t(yt[,tt+1]-t(mm.t)); 
      ofn=ofn+lnftemp; 
   } 
   return(ofn); 
} 
 
#  "sigma-squared" is a vector of fixed values. 
negloglikeRS.ssq.ml=function(theta,parval,yt)   
{ 
   p=nrow(yt); 
   aa=exp(theta[1]);             #  Constrains a > 0.             
   cc=2*exp(-exp(theta[2]))-1;   #  Constrains -1 < c < 1. 
   sigmasq=parval;  
   tausq=exp(theta[3]);          #  Constrains tsq > 0. 
   q=ncol(yt)-1; 
   jj=matrix(1,p,1); 
   JJ=matrix(1,p,p); 
   Itausq=matrix(0,p,p); 
   diag(Itausq)=rep(tausq); 
   mu.t=aa/(1-cc); 
   psq.t=sigmasq/(1-cc*cc); 
   mm.t=jj*mu.t; 
   VV.t=JJ*psq.t+Itausq; 
   VVinv=ginv(VV.t); 
   lnf=(p/2)*log(2*pi)+0.5*log(det(VV.t))+ 
      0.5*(yt[,1]-t(mm.t))%*%VVinv%*%t(yt[,1]-t(mm.t)); 
   ofn=lnf; 
   for (tt in 1:q) 
   { 
      mu.t=aa+cc*(mu.t+psq.t*t(jj)%*%VVinv%*%t(yt[,tt]-t(mm.t))); 
      psq.t=cc*cc*psq.t*(1-psq.t*t(jj)%*%VVinv%*%jj)+sigmasq; 
      mm.t=jj*mu.t[1]; 
      VV.t=JJ*psq.t[1]+Itausq; 
      VVinv=ginv(VV.t); 
      lnftemp=(p/2)*log(2*pi)+0.5*log(det(VV.t))+ 
         0.5*(yt[,tt+1]-t(mm.t))%*%ginv(VV.t)%*%t(yt[,tt+1]-t(mm.t)); 
      ofn=ofn+lnftemp; 
   } 
   return(ofn); 
} 
 
#  "tau-squared" is a vector of fixed values 
negloglikeRS.tsq.ml=function(theta,parval,yt)   
{ 

Page 4 of 7

3/9/2010http://ida.lib.uidaho.edu:6381/archive/ecol/E091/044/Dennis_etal_Gompertz_state_space_...



   p=nrow(yt); 
   aa=exp(theta[1]);             #  Constrains a > 0.              
   cc=2*exp(-exp(theta[2]))-1;   #  Constrains -1 < c < 1. 
   sigmasq=exp(theta[3]);        #  Constrains ssq > 0.  
   tausq=parval; 
   q=ncol(yt)-1; 
   jj=matrix(1,p,1); 
   JJ=matrix(1,p,p); 
   Itausq=matrix(0,p,p); 
   diag(Itausq)=rep(tausq); 
   mu.t=aa/(1-cc); 
   psq.t=sigmasq/(1-cc*cc); 
   mm.t=jj*mu.t; 
   VV.t=JJ*psq.t+Itausq; 
   VVinv=ginv(VV.t); 
   lnf=(p/2)*log(2*pi)+0.5*log(det(VV.t))+ 
      0.5*(yt[,1]-t(mm.t))%*%VVinv%*%t(yt[,1]-t(mm.t)); 
   ofn=lnf; 
   for (tt in 1:q) 
   { 
      mu.t=aa+cc*(mu.t+psq.t*t(jj)%*%VVinv%*%t(yt[,tt]-t(mm.t))); 
      psq.t=cc*cc*psq.t*(1-psq.t*t(jj)%*%VVinv%*%jj)+sigmasq; 
      mm.t=jj*mu.t[1]; 
      VV.t=JJ*psq.t[1]+Itausq; 
      VVinv=ginv(VV.t); 
      lnftemp=(p/2)*log(2*pi)+0.5*log(det(VV.t))+ 
         0.5*(yt[,tt+1]-t(mm.t))%*%ginv(VV.t)%*%t(yt[,tt+1]-t(mm.t)); 
      ofn=ofn+lnftemp; 
   } 
   return(ofn); 
} 
 
#  Log-likelihood for REML estimation. 
negloglikeRS.reml=function(theta,wt,pt)   
{ 
   cc=2*exp(-exp(theta[1]))-1;   #  Constrains -1 < c < 1. 
   sigmasq=exp(theta[2]);        #  Constrains ssq > 0.  
   tausq=exp(theta[3]);          #  Constrains tsq > 0. 
   q=length(wt)/pt; 
   qp1=q+1; 
   Sigma.mat=(sigmasq/(1-cc*cc))*toeplitz(abs(cc)^seq(0,q,1)); 
   J=matrix(1,pt,pt);          #  pXp matrix of ones. 
   I=diag(qp1);           #  (q+1)X(q+1) identity matrix. 
   D=kronecker(I,J);     #  kronecker product (block diagonal). 
   I.2=cbind(matrix(0,q*pt,pt),diag(q*pt)); 
   I.2=rbind(I.2,matrix(0,pt,pt*qp1)); 
   D=-D+2*I.2;     
   D=D[1:(q*pt),];  #  This is the D transformation matrix for REML. 
   j=matrix(1,pt,1);          #  pX1 column vector of ones. 
   j.2=matrix(1,pt*qp1,1);  #  p*(q+1) X 1 column vector of ones. 
   C=kronecker(I,j);    #  C matrix in the multivariate normal 
                        #    distribution of YP.reml. 
   V=C%*%Sigma.mat%*%t(C)+tausq*diag(qp1*pt);  #  Var-cov matrix of 
                                               #    YP.reml. 
   Phi.mat=D%*%V%*%t(D);    #  Var-cov matrix of WP.t. 
   Phiinv.mat=ginv(Phi.mat); 
   llikew=-(p*q/2)*log(2*pi)-(1/2)*log(det(Phi.mat))- 
      (1/2)*t(wt)%*%Phiinv.mat%*%wt;  #  REML log-likelihood. 
   ofn=-llikew; 
   return(ofn); 
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} 
 
#---------------------------------------------------------------------- 
#        SECTION FOR CALCULATING PROFILE LIKELIHOODS 
#---------------------------------------------------------------------- 
 
for (ii in 1:(nincs+1)) 
{ 
#  Calculate profile for "a". 
GSSRSaa=optim(par=c(log(-log((c0+1)/2)),log(ssq0),log(tsq0)), 
   negloglikeRS.a.ml,NULL,method="Nelder-Mead",parval=aavals[ii],yt=YP.t); 
profileRS.aa[ii]=-GSSRSaa$value; 
 
#  Calculate profile for "c". 
GSSRScc=optim(par=c(log(a0),log(ssq0),log(tsq0)), 
   negloglikeRS.c.ml,NULL,method="Nelder-Mead",parval=ccvals[ii],yt=YP.t); 
profileRS.cc[ii]=-GSSRScc$value; 
 
#  Calculate profile for "ssq". 
GSSRSssq=optim(par=c(log(a0),log(-log((c0+1)/2)),log(tsq0)), 
   negloglikeRS.ssq.ml,NULL,method="Nelder-Mead",parval=ssqvals[ii],yt=YP.t); 
profileRS.ssq[ii]=-GSSRSssq$value; 
 
#  Calculate profile for "tsq". 
GSSRStsq=optim(par=c(log(a0),log(-log((c0+1)/2)),log(ssq0)), 
   negloglikeRS.tsq.ml,NULL,method="Nelder-Mead",parval=tsqvals[ii],yt=YP.t); 
profileRS.tsq[ii]=-GSSRStsq$value; 
} 
 
#  Sets highest profile value at zero. 
profileRS.aa=profileRS.aa-max(profileRS.aa); 
profileRS.cc=profileRS.cc-max(profileRS.cc); 
profileRS.ssq=profileRS.ssq-max(profileRS.ssq); 
profileRS.tsq=profileRS.tsq-max(profileRS.tsq); 
 
#  Profiles plotted here. 
par(cex.lab=1.5, cex.axis=1.5, lwd=2); 
layout(matrix(1:4, 2, 2)); 
plot(aavals, profileRS.aa, type="l", lty=1, ylab="profile 
   log-likelihood", xlab=expression(a)); 
plot(ssqvals, profileRS.ssq, type="l", lty=1, ylab="profile 
   log-likelihood", xlab=expression(sigma^2)); 
plot(ccvals, profileRS.cc, type="l", lty=1, ylab="profile 
   log-likelihood", xlab=expression(c)); 
plot(tsqvals, profileRS.tsq, type="l", lty=1, ylab="profile 
   log-likelihood",  xlab=expression(tau^2)); 
 
 
#---------------------------------------------------------------------- 
#        SECTION FOR CALCULATING ML & REML ESTIMATES 
#---------------------------------------------------------------------- 
 
GSSRSml=optim(par=c(log(a0),log(-log((c0+1)/2)),log(ssq0),log(tsq0)), 
   negloglikeRS.ml,NULL,method="Nelder-Mead",yt=YP.t); 
GSSRSml=c(exp(GSSRSml$par[1]),2*exp(-exp(GSSRSml$par[2]))- 
   1,exp(GSSRSml$par[3]),exp(GSSRSml$par[4]),-GSSRSml$value); 
a.ml=GSSRSml[1];            # These are the ML estimates. 
c.ml=GSSRSml[2];            #          -- 
ssq.ml=GSSRSml[3];          #          -- 
tsq.ml=GSSRSml[4];          #          -- 
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lnlike.ml=GSSRSml[5];       #  This is the maximized log-likelihood 
                            #    value. 
 
GSSRSreml=optim(par=c(log(-log((c0+1)/2)),log(ssq0),log(tsq0)), 
   negloglikeRS.reml,NULL,method="Nelder-Mead",wt=WP.t,pt=p); 
GSSRSreml=c(2*exp(-exp(GSSRSreml$par[1]))-1,exp(GSSRSreml$par[2]), 
   exp(GSSRSreml$par[3]),-GSSRSreml$value); 
 
c.reml=GSSRSreml[1];            #  These are the REML estimates. 
ssq.reml=GSSRSreml[2];          #          -- 
tsq.reml=GSSRSreml[3];          #          -- 
lnlike.reml=GSSRSreml[4];       #  This is the maximized log-likelihood 
                                #    value. 
 
#  Calculate REML estimate of the parameter "a". 
Sigma.mat=(ssq.reml/(1-c.reml*c.reml))*toeplitz(c.reml^seq(0,q,1)); 
V.mat=C.ml%*%Sigma.mat%*%t(C.ml)+tsq.reml*diag(qplus1*p); 
Vinv.mat=ginv(V.mat); 
a.reml=(1-c.reml)*t(j.pXqp1)%*%Vinv.mat%*%YP.reml/ 
   (t(j.pXqp1)%*%Vinv.mat%*%j.pXqp1);             
 
#  Gather up stuff for printing. 
estimates.ml=c(a.ml,c.ml,ssq.ml,tsq.ml,lnlike.ml); 
estimates.reml=c(a.reml,c.reml,ssq.reml,tsq.reml,lnlike.reml); 
names.ml=c("a.ml","c.ml","ssq.ml","tsq.ml","lnlike.ml"); 
names.reml=c("a.reml","c.reml","ssq.reml","tsq.reml","lnlike.reml"); 
values.ml=data.frame(names.ml,estimates.ml); 
values.reml=data.frame(names.reml,estimates.reml); 
 
#  Print the ML results. 
values.ml; 
 
#  Print the REML results. 
values.reml; 
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