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An important component of the mathematical definition of chaos is sensitivity to
initial conditions. Sensitivity to initial conditions is usually measured in a determinis-
tic model by the dominant Lyapunov exponent (LE), with chaos indicated by a
positive LE. The sensitivity measure has been extended to stochastic models; how-
ever, it is possible for the stochastic Lyapunov exponent (SLE) to be positive when
the LE of the underlying deterministic model is negative, and vice versa. This occurs
because the LE is a long-term average over the deterministic attractor while the SLE
is the long-term average over the stationary probability distribution. The property of
sensitivity to initial conditions, uniquely associated with chaotic dynamics in deter-
ministic systems, is widespread in stochastic systems because of time spent near
repelling invariant sets (such as unstable equilibria and unstable cycles). Such
sensitivity is due to a mechanism fundamentally different from deterministic chaos.
Positive SLE’s should therefore not be viewed as a hallmark of chaos. We develop
examples of ecological population models in which contradictory LE and SLE values
lead to confusion about whether or not the population fluctuations are primarily the
result of chaotic dynamics. We suggest that ‘‘chaos’’ should retain its deterministic
definition in light of the origins and spirit of the topic in ecology. While a stochastic
system cannot then strictly be chaotic, chaotic dynamics can be revealed in stochastic
systems through the strong influence of underlying deterministic chaotic invariant
sets.
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The search for a definition of chaos has been guided
by attempts to describe carefully the basic properties
and patterns that are possible in certain deterministic
dynamic systems. The definition proposed by Alligood
et al. (1997) is indicative: ‘‘an orbit is chaotic if it is
bounded, not asymptotically periodic and has a posi-
tive Lyapunov exponent.’’

Ecological time series data represent a mixture of
deterministic and stochastic forces, and can be
modeled as stochastic perturbations around a deter-
ministic dynamic model (the ‘‘skeleton,’’ Tong 1990).
A central question becomes: can the deterministic
skeleton of a complex nonlinear system be experi-

mentally identified as equilibrium, periodic, or
chaotic?

The definition of the Lyapunov exponent (LE) was
extended to stochastic systems (Crutchfield et al. 1982,
McCaffery et al. 1992) and in recent years this extension
has been treated as an indicator of chaos in ecological
populations (Turchin 1993, 1995, 2003, Ellner and
Turchin 1995, Perry et al. 1997, Turchin and Ellner
2000). However, the LE and its extension, the stochastic
Lyapunov exponent (SLE) are different. The determinis-
tic LE is an average over the deterministic attractor,
whereas the stochastic Lyapunov exponent (SLE) is an
average over the steady-state probability distribution.
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In this paper, we develop two examples in population
ecology of situations in which the LE and the SLE are
discordant. The first example is theoretical: we give a
simple paper-and-pencil derivation of the LE and the
SLE for a stochastic version of the logistic model of
population growth. The second example is empirical:
we describe experimental results in which a model fitted
to population data provided estimates of the LE and
the SLE with widely disparate values. The second ex-
ample involves the larva-pupa-adult (LPA) model for
the flour beetle Tribolium. The two examples provide
insight into how a system with a negative LE in the
absence of noise can have a positive SLE when noise is
introduced. The phenomenon can occur even when the
deterministic system has a single, critically-damped sta-
ble equilibrium, a situation that would not normally be
regarded as chaos by empirical ecologists (Poole 1989a,
b). We subsequently discuss the historical reasons for
our view that taking a positive SLE as a hallmark of
chaos confuses the issues and is not consistent with the
spirit and impetus of the chaos hypothesis in ecology.

Deterministic and stochastic Lyapunov
exponents

Here we briefly outline the definitions of the LE and
SLE. It is the nature of the topic that one can quickly
get bogged down with mathematical technicalities and
exceptions, especially in a stochastic setting. Our at-
tempt here is to give a mostly verbal account of the
features germane to the issues we raise and to the types
of models commonly seen in population ecology.

The LE is a quantitative measure that characterizes
the dynamic properties of trajectories on deterministic
attractors. It is the long-run average rate of divergence
of nearby trajectories, and is often referred to as the
dominant LE. The LE is defined using the Jacobian
matrix of partial derivatives of the system equations.
For a continuous-time system, denoted by

dNt

dt
= f(Nt) (1)

or a discrete-time system in the form

Nt+1= f(Nt) (2)

where Nt is a vector of state variables and f(·) is a
vector of functions, the Jacobian matrix depends on its
location point N in phase space. The Jacobian matrix
J(N) at a point N is

J(N)=
�f(N)

�N
(3)

Trajectories of the model originating in a neighbor-
hood of the point N tend to converge toward or diverge
from each other depending on the eigenvalues of J(N).
In a continuous-time model, ‘‘almost all’’ trajectories
near N diverge if one or more of the eigenvalues has a
positive real part (there might be trajectories on a set of
measure zero, i.e. a reduced-dimension set in phase
space, that converge). In a discrete-time model, almost
all trajectories near N diverge if one or more of the
eigenvalues lies outside of a unit circle centered at the
origin in the complex plane. The convergence and
divergence of trajectories basically follows from Taylor
series linear approximation of the model equations (1,
2) near N. For a continuous-time system, let �(N)
denote the largest real part among the eigenvalues of
J(N). For a discrete-time system, let �(N) denote the
largest of the logarithms of the absolute values of the
eigenvalues. The quantity �(N) is known as the local
LE, and its value can vary considerably from point to
point throughout phase space. The (dominant) LE, �, is
the long-term average value of �(Nt) along a trajectory
Nt followed through time. The LE is

�= lim
t��

1
t
�

0

t

�(Nu)du (4)

in a continuous-time system, or

�= lim
t��

1
t

�
t

j=0

�(Nj) (5)

in a discrete-time system, provided the limits exist. For
practical purposes, existence of the limits requires exis-
tence of a bounded attractor, such as a stable point,
stable cycle, invariant loop, torus, or strange attractor.
When the model trajectory settles down onto an attrac-
tor, the relative contribution of the early transient part
of the trajectory to the average (4, 5) becomes vanish-
ingly small as time becomes large. Thus, the time-
average (4, 5) is effectively the average value of �(N) on
an attractor. If there are multiple attractors, each at-
tractor has its own � value which corresponds to start-
ing the trajectory anywhere within the basin of
attraction for that attractor.

A positive LE is an indication of a chaotic attractor;
small differences in initial conditions are, on average,
magnified on the attractor. A negative LE indicates that
trajectories differing by tiny changes in initial condi-
tions tend in the long run to converge, as is the case
with a stable point equilibrium or a stable periodic
cycle.

For data analysis, a common practice is to fit a
model and then follow a model trajectory through time.
At each time step, the model-estimated Jacobian matrix
is evaluated. The long-run average dominant eigenvalue
is then found using one of various methods (one com-
mon method is to calculate the ongoing product of the
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Jacobian matrices, similar to multiplying a Leslie pro-
jection matrix repeatedly to get the eigenvalue repre-
senting the long-term population growth rate; see
Dennis et al. 2001 for details).

In the stochastic setting, we consider f(Nt) to repre-
sent some underlying deterministic tendency influencing
the vector of state variables Nt. The state variables in
addition are assumed to be influenced by stochastic
forces (noise). Many types of stochastic models have
the structure of a noise model superimposed on an
underlying deterministic model (the skeleton). Exam-
ples are the continuous time diffusion processes (Karlin
and Taylor 1981, Gardiner 1983), and discrete time
stochastic difference equations (Tong 1990).

Like the LE, the definition of the SLE revolves
around the Jacobian matrix (3). If an average like (4) or
(5) is calculated by following a stochastic model trajec-
tory through time, the quantity may or may not con-
verge, depending on the properties of the model. If the
stochastic model is ergodic, meaning that it settles
down into a long-run statistical equilibrium (or more
technically, that neighborhoods of the state space are
revisited in finite time with probability 1), then long-run
averages such as (4) or (5) usually converge. An ergodic
stochastic model typically has a long-run probability
distribution, known as a stationary distribution, that is
independent of time and initial conditions. The limit
involved in (4) or (5) is equivalent to the expected value
of the local LE with respect to the stationary distribu-
tion of the stochastic model.

To summarize, the LE and the SLE concepts both
start from the idea that trajectories originating near a
point N tend to converge to or diverge. The dominant
eigenvalue in the linearization of the model near N
provides a measure of the rate of convergence or diver-
gence (if N is an equilibrium point of a deterministic
system, then that eigenvalue provides the familiar test
of the local stability of the equilibrium; May 1974a).
The LE and the SLE arise as averages by following a
model trajectory through time and calculating the re-
sulting eigenvalues at all states visited by the system. If
a deterministic system has an attractor, then the averag-
ing process used to construct the LE will converge to
the average on the attractor. The SLE average, how-
ever, converges to the average with respect to the
stationary distribution of the stochastic model. Usually,
a deterministic attractor is a set of dimension much
reduced from the dimension of the state space. By
contrast, a stochastic model with a stationary distribu-
tion typically produces trajectories that visit and revisit
all portions of the state space, even though the underly-
ing skeleton has a reduced dimension attractor. Thus,
in a stochastic model, the LE of the skeleton and the
SLE are substantially different concepts. The differ-
ences are noteworthy in the following two examples.

Continuous-time logistic model

The following analytical demonstration illustrates how
the SLE can be positive even when the underlying
deterministic model has a point equilibrium that is
stable for all positive initial population sizes.

(a) Deterministic model

A continuous-time model of the growth of a single
population is

dNt

dt
= f(Nt) (6)

where f(.) is a function specifying any dependence of
the population growth rate, dNt/dt, on population
abundance, Nt. A well-known example is the logistic
model, in which the function f(.) is quadratic (Gotelli
1995, Hastings 1997):

dNt

dt
=aNt−bNt

2 (7)

When the constants a and b are both positive, the
logistic model (7) has a positive equilibrium at N�=a/
b that is stable and is the attractor for all positive initial
population sizes. The origin under such circumstances
is an unstable equilibrium.

The Jacobian of the logistic model for any particular
population size N is the derivative of f(.) evaluated at
N :

f �(N)=a−2bN (8)

In one dimension, the Jacobian is its own eigenvalue.
This eigenvalue (8) separates the state space of abun-
dances into two regions. The eigenvalue is positive for
values of N lying below one half of the stable equi-
librium (N�a/(2b)=N�/2). Two initial conditions in
this lower abundance region, separated by a small
distance, would have model trajectories that diverge
from each other for a short time period. Indeed, the
logistic model trajectories initiated at low abundances
resemble exponential growth. In other words, the re-
gion of abundance near zero in the logistic model has
the property of temporary sensitivity to initial condi-
tions. Of course, if enough time elapses, the distance
between any two trajectories in this low region will
eventually decrease as the trajectories approach N�.

The eigenvalue (8) is negative for values of N greater
than N�/2. All trajectories initiated at positive abun-
dances eventually enter this high abundance region
containing the stable point equilibrium, N�. In this
region, nearby trajectories converge, rather than di-
verge. Trajectories in the high abundance region do not
have the property of sensitivity to initial conditions.
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The LE for the model is the long-run average value
of the eigenvalue on the attractor. In this case, the LE
is the Jacobian evaluated at the stable point equi-
librium, N�:

�= f �(N�)= f �(a/b)= −a (9)

The negative sign of � confirms the absence of deter-
ministic chaos in this model. It is well-known, in fact,
that a one-dimensional autonomous differential equa-
tion cannot have chaotic solutions (Drazin 1992).

(b) Stochastic model

The following continuous-time stochastic version of the
logistic model has been frequently studied (Dennis and
Patil 1984). Let Nt be a diffusion process (Karlin and
Taylor 1981, Gardiner 1983) with infinitesimal mean
function m(n)=an−bn2 and infinitesimal variance
function �(n)=�2n2 (�2�0). This is identical to as-
suming that Nt is governed by an Ito stochastic differ-
ential equation of the form

dNt= (aNt−bNt
2)dt+�NtdWt, (10)

where dWt has a normal distribution with mean 0 and
variance dt (Weiner process increment). The model has

been proposed to represent a population growing logis-
tically but subjected to environmental noise fluctuations
(Leigh 1968, Dennis and Patil 1984). The parameter �2

scales the intensity of the noise fluctuations.
The statistical distribution for Nt governed by (10)

converges to a long-term stationary distribution,
provided the noise intensity is not too large. The sta-
tionary distribution is a gamma distribution (Dennis
and Patil 1984), with probability density function given
by

p(n)=
��

�(�)
n�−1e−�n, (11)

in which �= (2a/�2)−1 and �=2b/�2 (Fig. 1). The
condition for the existence of the stationary distribution
is ��0 (or �2�2a). The stationary gamma model has
had extraordinary success in describing equilibrial dy-
namics of single species populations (Costantino and
Desharnais 1981, Dennis and Costantino 1988, Deshar-
nais et al. 1990, Kemp and Dennis 1993).

For the stochastic logistic model (10), the SLE is the
Jacobian (8) averaged over the long-run stationary
distribution. Noting that the expected value of a
gamma variate is (Rice 1995)

E(N)=
�

0

�

np(n) dn=�/� (12)

Fig. 1. Solid curves: three gamma probability distributions of equilibrium population abundance. The gamma density curves are
given by p(n)=��n�−1e−�n/�(�), where �= (2a/�2)—1, �=2b/�2, and n is population size, and are plotted using a=0.06,
b=0.0006, and three different values of �2. The mound-shaped curve corresponds to �2=0.02 (�=5). The decreasing J-shaped
curve intersecting the vertical axis at 0.02 is the exponential distribution, a special case of the gamma distribution corresponding
to �2=0.06 (�=1.0). The decreasing J-shaped curve with a pole at zero corresponds to �2=0.08 (�=0.5). Vertical dashed line:
deterministic equilibrium abundance level (carrying capacity) N�=a/b=100. Vertical solid line: abundance level N�/2=50
below which the Jacobian of the deterministic logistic model is positive. The J-shaped gamma distribution with a pole produces
a positive stochastic Lyapunov exponent, while the stochastic Lyapunov exponent for the mound-shaped gamma distribution is
negative. The exponential distribution case produces a stochastic Lyapunov exponent of zero.
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we have

�s=E [ f �(N)]=E(a−2bN)=a−2bE(N)=�2−a
(13)

If �2�a, the SLE is positive, indicating overall sensi-
tivity, on average, to initial conditions. Appending the
condition for existence of the stationary distribution,
we find the conditions for a positive SLE to be a�
�2�2a.

Thus, the average sensitivity to initial conditions in
the stochastic logistic model (10) is determined by the
noise intensity. If �2�a, the noise intensity is low
compared to the strength of the deterministic forces
(a= �−a �= �� � is the magnitude of the eigenvalue mea-
suring the stability of the deterministic point equi-
librium). The LE and SLE are in concert: neither
indicate chaos (Fig. 1). If a��2�2a, the SLE is
positive and the LE remains negative. The two mea-
sures are then not accord. What happens is that the
gamma stationary distribution becomes J-shaped, with
the largest portion of probability near the origin (Fig.
1). The population spends the bulk of its time in the
abundance region between 0 and N�/2, in which the
Jacobian (8) is positive. For 2a��2, there is no sta-
tionary distribution. The time-dependent probability
distribution of Nt piles up over an arbitrarily small
interval near zero as t��. The stochastic population
undergoes a ‘‘noise-induced transition’’ (Horsthemke
and Lefever 1984) from long-run equilibrium to certain
extinction. Enroute to extinction, trajectories will dis-
play sensitivity to initial conditions.

This behavior of the SLE is not peculiar to the
diffusion process version of the logistic. In the familiar
deterministic, discrete-time versions of the logistic, such
as the quadratic map and the Ricker map, chaos occurs
when density dependence becomes so overcompensa-
tory that it continually knocks the population to levels
near zero, a repelling set (Berryman and Millstein 1989,
Berryman 1991). If the discrete-time models are con-
verted to stochastic models, noise alone can cause a
positive SLE by perturbing the population to levels
near zero, even when the underlying map is not over-
compensatory but rather predicts just a critically
damped stable point (Desharnais et al. 1997).

LE and SLE estimated from experimental
data

Here we display an empirical example in which a
population model, fitted to an experimental data set,
provides point estimates and confidence intervals for
the LE and SLE. The confidence intervals for the LE
and SLE yield the conclusion that the LE and the SLE
have opposite signs.

In a recently reported experiment, demographic
parameters of laboratory cultures of flour beetles (Tri-
bolium castaneum) were manipulated to test a series of
bifurcations predicted by a mathematical population
model (Dennis et al. 2001). The model, the ‘‘LPA
model’’ (larvae–pupae–adult), is a stage structured,
discrete time, non-linear population model with three
state variables (Dennis et al. 1995). It has successfully
explained and predicted a variety of non-linear phe-
nomena, including transitions between dynamic regimes
(such as equilibria, two-cycles, three-cycles, invariant
loops, and chaos), multiple attractors, saddle influences,
sensitivity to initial conditions, and lattice effects
(Costantino et al. 1995, 1997, 1998, Cushing et al. 1996,
1998a, b, 2001, Dennis et al. 1995, 1997, 2001, Henson
et al. 1999, 2001, Desharnais et al. 2001). In all of these
studies, consideration of stochasticity has played a key
role in statistical analysis and interpretation of the
actual dynamic behaviors displayed by the populations.
Our current working hypothesis is that the bulk of
departures of data from model are explained by
stochastic fluctuations of the ‘‘demographic’’ type: the
independent random contributions of births and deaths
by individual population members (Dennis et al. 2001).

A demographic stochastic version of the LPA model
(Dennis et al. 2001) for the flour beetle is given by the
following equations:

Lt+1= (�bAt exp(−celLt−ceaAt)+E1t)
2

Pt+1= (�Lt(1−�l)+E2t)
2

At+1= (�Pt exp(−cpaAt)+At(1−�a)+E3t)
2 (14)

where Lt denotes the number of feeding larvae (the
L-stage), Pt denotes the number of non-feeding larvae,
pupae, and callow adults (the P-stage), and At denotes
the number of adults (the A-stage). The discrete time
interval is two weeks. The coefficient b�0 denotes the
average number of larvae recruited per adult per unit of
time in the absence of cannibalism, �a and �l are the
adult and larval probabilities of dying from causes
other than cannibalism (0��a, �l�1), and the expo-
nentials exp(−ceaAt−celLt) and exp(−cpaAt) repre-
sent the probabilities that individuals survive
cannibalism in one unit of time, with cannibalism co-
efficients cel, cea, cpa�0. Also, E1t, E2t, E3t are noise
terms assumed to have a joint trivariate normal distri-
bution with mean vector of 0 and a variance–
covariance matrix of �. In our analyses, covariances
among E1t, E2t, and E3t at any given time t were
represented by off-diagonal elements of �, but they
turned out to be negligibly small, consistent with the
hypothesis that the noise is largely of the demographic
type. We also assumed that the noise terms were uncor-
related through time. The deterministic LPA model is
retrieved by setting �=0.
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The experiment in question consisted of manipulat-
ing adult recruitment so as to fix the parameter cpa at a
set of seven values: 0, 0.05, 0.10, 0.25, 0.35, 0.5, 1.0.
Three replicate cultures were maintained at each treat-
ment value of cpa; adult mortality in these cultures was
manipulated so as to fix the parameter �a at 0.96. Three
unmanipulated control cultures were maintained as
well. The set of cpa values was selected because the LPA
model, fitted to an earlier data set, predicted a striking
series of transitions in dynamic behavior, the highlight
of which was chaos sandwiched in between other pre-
sumably more recognizable behaviors (stable point
equilibrium, three-cycle, etc.). Complete details of the
experiment and the statistical methods can be found in
Dennis et al. (2001).

The stochastic LPA model (14) was fitted to data
from the experiment using the method of conditional
least squares. A bootstrapping method for time series
was adapted for obtaining confidence intervals for
parameter values. In addition, confidence intervals for
functions of parameters, in particular the LE and SLE
for each experimental treatment, were obtained with
the bootstrapping method. The method also yielded
confidence sets for the type of underlying dynamic
behavior in the skeleton at each treatment.

We focus here on one treatment in the experiment, in
which the contrast between the LE and SLE was espe-
cially sharp. For the value cpa=0.5 (and �a=0.96), the
LPA model skeleton under the earlier parameters used
to design the experiment had predicted a distinctive
three-cycle attractor: the L-stage, for instance, was pre-
dicted to display two low abundances followed by a
very high abundance. The model, when fitted to the
experiment data, indeed produced a point estimate of a
three-cycle attractor for the cpa=0.5 treatment (Fig. 2).
Furthermore, in 2000 bootstrap simulations of the ex-
periment and model-fitting process, 100% of the boot-
strap data sets had three-cycle behavior as the
estimated attractor for cpa=0.5 (Dennis et al. 2001
gave ‘‘pie charts’’ of the behaviors of the types of
bootstrap-estimated attractors for each experimental
treatment). The data certainly give the impression of a
three-cycle, albeit with some added noise (Fig. 2). Simu-
lations of the stochastic demographic LPA model (14)
resemble the data closely (Fig. 2).

The estimated LE for the cpa=0.5 treatment rein-
forces the conclusion that a periodic attractor influences
dynamics of populations under that treatment. The
95% bootstrap confidence interval for the LE at that
treatment was (−0.101, −0.080); the confidence inter-
val spans only negative values. There is no indication
that the skeleton for that treatment could plausibly be
an aperiodic loop (LE=0) or chaotic (LE�0).

The SLE tells a different story. The 95% bootstrap
confidence interval for the cpa=0.5 treatment was
(0.013, 0.025), spanning entirely positive values. Ac-
cording to some recent authors in population ecology,

Fig. 2. (A) Population abundance data (open circles) and
underlying 3-cycle attractor (solid circles) of the deterministic
portion of the fitted stochastic LPA model, plotted in phase
space. Data and model are from Dennis et al. (2001). (B)
Simulated data from the fitted stochastic LPA model.

this situation, consisting of an underlying, strongly
periodic attractor with demographic noise, should be
labeled ‘‘chaos,’’ due to the positive SLE. We disagree.

Discussion

The hypothesis of chaos in ecology

For evaluating uses of the SLE, it is valuable to keep in
mind the historical context of the chaos hypothesis in
ecology. The fundamental assertion of mathematical
ecology has been, from the beginnings of the discipline,
that simple deterministic models can help unlock sub-
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stantial gains in understanding population systems
(Scudo and Ziegler 1978, Kingsland 1985). The news
that simple deterministic models could display exotic,
seemingly random behavior (May 1974b) was electrify-
ing, precisely because real population time series often
seemed devoid of unambiguous signals. The hypothesis
of chaos in ecological populations originally empha-
sized low-dimensional, non-linear, deterministic forces.
According to the hypothesis, if a few non-linear forces
such as predation or overcompensating density depen-
dence could be correctly identified, then the seemingly
stochastic fluctuations of population abundances might
be largely explained in terms of simple deterministic
models. May (1976) wrote:

‘‘Quite apart from their intrinsic mathematical interest, the
above results raise very awkward biological questions. They
show that simple and fully deterministic models, in which
all biological parameters are exactly known, can nonethe-
less (if the non-linearities are sufficiently severe) lead to
population dynamics which are in effect indistinguishable
from the sample function of a random process. Apparently
chaotic population fluctuations need not necessarily be due
to random environmental fluctuations, or sampling errors,
but may reflect the workings of some deterministic, but
strongly density dependent, population model.’’

The deterministic, low-dimensional formulations of
population models were fully in keeping with the scien-
tific spirit and excitement attending the concept of
chaos, as exemplified by May’s quote above. After
May’s discoveries, mathematical ecologists contributed
many deterministic population models with potential
for chaotic behavior (May and Oster 1976, May 1986,
Hastings et al. 1993). However, convincing evidence at
that time for actual chaos in an ecological population
was not forthcoming. In fact, in an influential study
(Hassell et al. 1976), one-dimensional, discrete time
models were fitted to data from many populations, and
only stable point and stable cyclic dynamics were esti-
mated for all the field populations surveyed. While
Schaffer (1985) pointed out that the focus on one-
dimensional models was misdirected, and that potential
for chaos was nearly ubiquitous in realistic models with
three or more state variables, debate about the rele-
vance of chaos for understanding real population fluc-
tuations continued. Mathematical ecologists tended to
be enthusiastic and optimistic, but seasoned empirical
ecologists were highly skeptical. The leading counter-
hypothesis was that population abundances, though
undeniably influenced by endogenous forces, were
largely buffeted by exogenous forces of an essentially
stochastic nature (Berryman and Millstein 1989, Poole
1989a, b, Berryman 1991).

Randomness and chaos

Are noise and chaos different? The word ‘‘indistinguish-
able’’ in May’s quote above was a tempting challenge

to mathematicians, who responded with hundreds of
papers on the properties of non-linear dynamic models.
The mathematical properties of deterministic chaos
gradually became better understood, and mathematical
definitions of chaos emerged. While the technicalities of
the chaos definitions vary to this day among textbooks,
the property of sensitivity to initial conditions was a
nearly universal ingredient.

Sensitivity to initial conditions was not enough,
though, according to the definitions. The exponential
growth equation, for example, is sensitive to initial
conditions when the growth rate is positive, but was not
regarded as chaotic. The definitions made clear that
chaos was a property of an attractor of a deterministic
system. Typical additional requirements for chaos were
that the attractor had to be bounded and densely
embedded with periodic solutions (Drazin 1992).

During the years following the chaos discoveries,
attitudes about the nature of stochastic forces changed.
Under the emerging view, true randomness did not exist
in the macroscopic world (as it does in the world of
atomic and subatomic particles). All apparent random
behavior would have deterministic causes, but some
systems would require unwieldy, high-dimensional
models to describe the state variables properly (West
1985). A coin toss, the quintessential example of a
random system, could in principle be described ade-
quately, if inconveniently, by Newton’s laws (Kolata
1986). Adopting a stochastic model to describe a system
became viewed as a matter of convenience: absent a
low-dimensional deterministic model of the system, a
stochastic model at least might provide the long-run
frequency tendencies of the system states. Successful
probabilistic description would occur when the station-
ary probability distribution of the stochastic model
closely resembled the invariant measure of the (pre-
sumably chaotic) attractor in the deterministic system
(Lasota and Mackey 1985). Algorithms for generating
‘‘random’’ numbers with computers exploit such resem-
blances. Randomness is chaos, but calling it ‘‘noise’’ is
a strategic modeling decision amounting to an admis-
sion that the system fluctuations remain high dimen-
sional and unexplained.

Noise-induced sensitivity

During the years following the chaos discoveries,
stochastic population models also received increased
attention. May (1974a) again catalyzed the discussion:
‘‘So far, all the models have assumed an unvarying,
deterministic environment. But real environments are
uncertain. The birth rates, carrying capacities, competi-
tion coefficients, and other parameters which character-
ize natural systems all, to a greater or lesser degree,
exhibit random fluctuations.’’ In other words, real eco-
logical systems might be so complex that probabilistic
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description at some level becomes necessary. Impetus
for the stochastic approach came from conservation
biology (Leigh 1981, Shaffer 1981, Lande and Orzack
1988, Dennis et al. 1991).

Early in the stochastic investigations it became clear
that a stochastic model can display behavior consider-
ably different from its deterministic counterpart, espe-
cially when non-linear forces are influential. For
instance, when stochastic versions are constructed in
the form of a deterministic ‘‘signal’’ perturbed multi-
plicatively by exogenous ‘‘noise’’, the central tendency
measures such as means or modes can bear little resem-
blance to the deterministic dynamics (for instance, Den-
nis and Patil 1984). Differences in the dynamic
behaviors of deterministic models and their stochastic
versions, termed ‘‘noise-induced transitions,’’ were
studied intensively in physics (Horsthemke and Lefever
1984).

The mathematical definition of ‘‘sensitivity to initial
conditions’’ in terms of the SLE was extended to
stochastic systems by mathematical physicists (Mayer-
Kress and Haken 1981, Crutchfield et al. 1982). It was
noted that for simple models such as the logistic map
perturbed by noise, positive SLE’s occurred at far lower
values of the control parameter than for positive LE’s.
Such dynamic phenomena were referred to as ‘‘noise-
induced chaos’’ (Crutchfield et al. 1982), in keeping
with the vocabulary of the contemporary investigations
of noise-induced transitions (Horsthemke and Lefever
1984). Later, a formal mathematical definition of chaos
for stochastic systems was given by Eckmann and
Ruelle (1985). They considered a system to be chaotic if
it exhibits sensitivity to initial conditions (as determined
by a positive SLE) and bounded fluctuations. This
definition omitted requirements on the attractor of the
underlying deterministic model.

Unstable chaotic invariant sets

The sensitivity to initial conditions as determined by a
positive SLE can indeed arise in ‘‘chaos-like’’ ways.
Rand and Wilson (1991) noted that sensitivity to initial
conditions in a stochastic system can arise when chaotic
invariant, but repelling, sets on stable manifolds are
embedded in the underlying deterministic model. Gao
et al. (1999), taking issue with Crutchfield et al. (1982),
suggested that the term ‘‘noise-induced chaos’’ should
refer only to such situations involving chaotic invari-
ants. The idea is that in a noisy system, a trajectory
would often leave the deterministic attractor and come
under the influence of the manifold of the chaotic set.
The trajectory would display a ‘‘fly by’’ (Cushing et al.
1998a) of the unstable chaotic set, and thus would
sometimes appear to be under the influence of chaotic
dynamics.

However, the SLE by itself cannot distinguish such
noise-revealed chaotic invariant sets from other types of
initial condition sensitivity. As we have shown here,
average sensitivity to initial conditions can occur in
stochastic models even without such lurking chaotic
repellors. All that is needed is for any kind of repelling
region of phase space to be revisited often enough for
the SLE average to be positive. Such a region could be
an unstable point on a stable manifold (Cushing et al.
1998a). A stable manifold is not even needed; in the
stochastic logistic example we described here, the un-
stable origin did not have an associated stable mani-
fold, but its neighborhood was revisited enough for the
SLE to be positive. Noise is indeed pervasive, but the
details of the deterministic phase space are important to
understanding population fluctuations.

We suggest the term ‘‘noise-revealed chaos’’ for de-
scribing the revisitation of chaotic unstable sets when
noise is added to a deterministic model. Note that
documenting such a situation would require substantial
knowledge of the workings of the deterministic aspects
of the system. In fact, just establishing that there exists
a chaotic-but-unstable invariant set in any deterministic
model can be a formidable simulation challenge.

Estimating chaos

It was one thing to define chaos; it was another thing to
estimate it. Early work on searching for chaos in eco-
logical data used graphical methods to portray the
low-dimensional, deterministic attractors embedded
within time series data (Schaffer 1985). In the 1980s,
mathematical physicists offered some statistical meth-
ods for estimating LE’s and SLE’s, but the data re-
quirements of the methods were too large for general
use in ecology (Ellner et al. 1991). Statisticians took up
the study of chaos surprisingly late (Bartlett 1990,
Berliner 1992). McCaffrey et al. (1992) and Nychka et
al. (1992) studied the statistical properties of non-
parametric estimates of SLE’s in time series. McCaffrey
et al. (1992) accepted Eckmann and Ruelle (1985) defin-
ition of chaos as sensitivity to initial conditions, and
wrote: ‘‘only sensitive dependence on initial conditions
distinguishes chaotic systems from non-chaotic systems,
and any such system with bounded fluctuations and
sensitive dependence on initial conditions is chaotic,
whether or not it is purely deterministic.’’ They used
various non-parametric regression methods to estimate
the deterministic model (skeleton) and lag time (embed-
ding dimension) underlying a time series. The estimated
SLE was obtained from the estimated stochastic model
(estimated skeleton plus noise). The approach was non-
mechanistic in the sense that the estimated skeleton was
merely a highly flexible surface fitted to the data that
did not contain any a priori hypothesized relationships
among state variables.
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The understanding and use of ‘‘mechanistic’’ non-
linear stochastic models for analyzing time series data
was greatly enhanced by (Tong 1990). In this approach,
a non-linear dynamic system model (the skeleton) is
used as the core of a statistical time series model, by
adding noise to the model in some fashion. Statistical
theory then prescribes methods of estimating model
parameters (fitting the model to data), testing different
model structures, and evaluating the results. Thus, if
hypothetical mechanisms explaining a population’s fluc-
tuations could be identified and formulated into a
deterministic model, then the model can potentially be
connected to time series data, evaluated, and used for
predictions. Noteworthy are the cautions that Tong
sounded about the complexities of interpreting the SLE
in such models (Yao and Tong 1994, Tong 1996).

With the data requirements reduced to ecologically
feasible levels, claims of chaos in ecological systems
followed. In the early studies, chaos was defined as
sensitivity to initial conditions, as indicated by a posi-
tive SLE. Turchin and Taylor (1992) used a parametric
flexible-surface regression method (response surface
methodology) to estimate the skeleton and SLE.
Turchin (1993) and Ellner and Turchin (1995), using
the parametric and non-parametric frameworks, docu-
mented examples of apparently chaotic time series of
ecological populations, as indicated by positive SLE
estimates. These SLE estimates were not accompanied
by estimates of the standard errors (Falck et al. 1995a,
b). Moreover, estimates of the LE’s of the underlying
skeletons were not reported. Thus, we do not know
whether the apparent chaos was due to the influence of
underlying low-dimensional chaotic attractors or to
stochastic visitation of transient areas in phase space
where trajectories tend to diverge.

More recently, Turchin and Ellner (2000) undertook
a double-pronged analysis of time series from
Fennoscandian vole populations. They combined
model-free time series analysis using kernel regression
with the fitting of mechanistic predator-prey models. A
fascinating latitudinal gradient in stability was docu-
mented, with the northernmost populations experienc-
ing ‘‘quasi-chaos’’ (mechanistic model) or ‘‘weak
chaos’’ (phenomenological model). Their analyses rep-
resent one of the most sophisticated investigations of
time series from field populations published to date.

The ‘‘global Lyapunov exponent’’ that Turchin and
Ellner (2000) reported is what we here have termed the
SLE. The chaos they document is that of ‘‘exogenous
noise amplified by sensitive dependence on initial condi-
tions.’’ We suggest that their conclusions about dynam-
ics would be more complete and interpretable if they
had reported point estimates and confidence intervals
for the LE, along with estimates and confidence sets for
the types of dynamic behaviors in the model skeletons.

We point out also that the local LE (see paragraph
after (3)) can sometimes aid in the interpretation of

dynamic behavior and deserves more attention (Bailey
et al. 1997, Grenfell et al. 2002). Because its value varies
across phase space, the local LE can help chart regions
of sensitivity to initial conditions. Cushing et al. (2001),
for instance, produced a map of a chaotic attractor in
the LPA model, color-coded according to values of the
local LE. The map of the ‘‘hot’’ and ‘‘cold’’ spots of the
attractor served as the basis for the design of an
experiment to test the control of chaos with tiny pertur-
bations (Desharnais et al. 2001). As with the LE and
SLE, the local LE can be defined differently for
stochastic systems, but the interpretation of the differ-
ences seems more straightforward.

Concluding remarks

Defining chaos in terms of a positive SLE confounds
both stochasticity and complex non-linear dynamics. It
classifies noisy systems as chaotic as well as systems
under the influence of low-dimensional, non-linear
forces. We have shown that non-linear models with
simple deterministic dynamics, such as a stable point
equilibrium, can display positive SLE’s in the presence
of noise. Furthermore, we have displayed a real exam-
ple of an experimental population in which a positive
SLE was quite uninformative about what kind of dy-
namics were present. While ecological systems with
positive SLE’s possess, on average, ‘‘sensitivity to initial
conditions,’’ we do not believe that ecologists would
want to label all such systems as chaotic.

From the beginning, our work has emphasized the
importance of stochasticity in ecological dynamics. It is
a misrepresentation to claim that we ‘‘… see the goal of
analysis as the characterization of the purely endoge-
nous part [of] underlying fluctuations also known as the
‘deterministic skeleton’’’ (Turchin 2003). What we take
issue with, rather, is the practice of calling a system
with a noisy equilibrium ‘‘chaotic,’’ under the SLE
classification.

Mathematical chaos is more clearly defined for deter-
ministic systems, and we suggest that the word ‘‘chaos’’
in mathematical modeling be reserved for describing
that ever-fascinating deterministic behavior. All ecolog-
ical systems are subject to ‘‘noise,’’ and so our sugges-
tion would imply that ecological populations cannot be
strictly chaotic. The way is open, though, for ecologists
to demonstrate that populations are strongly influenced
by underlying skeletons with chaotic dynamics or what-
ever other dynamics (Dennis et al. 2001). Indeed, the
provocative challenge issued by mathematical ecologists
was the hypothesis that population fluctuations might
be largely deterministic, caused by simple non-linear
interactions.

Can noise induce chaos? We suggest the answer
should be ‘‘no’’.
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