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It is unquestionably true that hierarchical models

represent an order of magnitude increase in the scope

and complexity of models for ecological data. The past

decade has seen a tremendous expansion of applications

of hierarchical models in ecology. The expansion was

primarily due to the advent of the Bayesian computa-

tional methods. We congratulate the authors for writing

a clear summary of hierarchical models in ecology.

While we agree that hierarchical models are highly

useful to ecology, we have reservations about the

Bayesian principles of statistical inference commonly

used in the analysis of these models. One of the major

reasons why scientists use Bayesian analysis for hier-

archical models is the myth that for all practical

purposes, the only feasible way to fit hierarchical models

is Bayesian. Cressie et al. (2009) do perfunctorily

mention the frequentist approaches but are quick to

launch into an extensive review of the Bayesian analyses.

Frequentist inferences for hierarchical models such as

those based on maximum likelihood are beginning to

catch up in ease and feasibility (De Valpine 2004, Lele et

al. 2007). The recent ‘‘data cloning’’ algorithm, for

instance, ‘‘tricks’’ the Bayesian MCMC setup into

providing maximum likelihood estimates and their

standard errors (Lele et al. 2007). A natural question

that a scientist should ask is: if one has a hierarchical

model for which full frequentist (say, based on ML

estimation) as well as Bayesian inferences are available,

which should be used and why? This can only be

answered based on the philosophical underpinnings. The

convenience criterion, commonly used to justify the use

of Bayesian approach, no longer applies, given the

recent advances in the frequentist computational ap-

proaches. Although the Bayesian computational algo-

rithms made statistical inference for such models

possible, it is not clear to us that the Bayesian inferential

philosophy necessarily leads to good science. In return

for seemingly confident inferences about important

quantities in the face of poor data and vast natural

uncertainties, are ecologists making a Faustian bargain?

We begin by stating our reservations about the

scientific philosophy advocated by the authors. The

authors claim that modeling is for synthesis of informa-

tion (Cressie 2009). Furthermore, they claim that

subjectivity is unavoidable. We completely disagree with

both these statements. In our opinion, the fundamental

goal of modeling in science is to understand the

mechanisms underlying the natural phenomena. Models

are quantitative hypotheses about mechanisms that help

us connect our prospective understandings to observable

phenomena. Certainly in the sociology of the conduct of

science, subjectivity often enters in the array of

mechanisms hypothesized. However, good scientists are

trained rigorously toward considering as many alter-

native explanations as imagination allows, with the

ultimate filters being consistency with observation,

experiment, and previous reliable knowledge. Introduc-

ing more subjectivity into the process of acquiring

reliable knowledge introduces confounding factors in

the empirical filtering of hypotheses, and so as scientists,

we should be striving to reduce subjectivity instead of

increasing it. Just because there is subjectivity in

hypothesizing mechanisms, it does not give us a free
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pass to introduce subjectivity in testing those mecha-

nisms against the data.

Obtaining hard, highly informative data requires

substantial resources and time. Can expert opinion play

a role in inference? Eliciting prior distributions from

experts for use in Bayesian statistical analysis has often

been suggested for incorporating expert knowledge.

However, eliciting priors is more art than science. Aside

from this operational difficulty, a far more serious

problem is in deciding ‘‘who is an expert.’’ In the news

media, ‘‘experts’’ are available to offer sound bites

favoring any side of any issue. As scientists, we might

insist that expert opinion should be calibrated against

reality. Furthermore, the weight the expert opinion

receives in the statistical analysis should be based on the

amount and quality of information such an expert

brings to the table. Bayesian analysis lacks such explicit

quantification of the expertness.

We do believe that expert opinion can and should be

brought into ecological analyses (Lele and Das 2000,

Lele 2004), although not by Bayesian methods. Re-

cently, Lele and Allen (2006) showed how expert

opinion can be incorporated using a frequentist frame-

work by eliciting data instead of a prior. The method-

ology suggested in Lele and Allen (2006) automatically

weighs expert opinion and hard data according to their

Fisher information about the parameters of the process.

The expert who brings in only ‘‘noise’’ and no

information automatically gets zero weight in the

analysis. Provided the expert opinion is truly informa-

tive, the confidence intervals and prediction intervals

after incorporation of such opinion are shown to be

shorter than the ones that would be obtained without its

inclusion. It is thus possible to incorporate expert

opinion under the frequentist paradigm.

Hierarchical models are attractive for realistic model-

ing of complexity in nature. However, as a general

principle, the complexity of the model should be

matched by the information content of the data. As

the number of hierarchies in the model increases, the

ratio of information content to model complexity

necessarily decreases.

Unfortunately expositions of Bayesian methods for

hierarchical models have tended to emphasize practice

while deemphasizing the inferential principles involved.

Potential consequences of ignoring principles can be

severe when such data analyses are used in policy

making. In the following, we discuss some myths and

misconceptions about Bayesian inference.

‘‘Flat’’ or ‘‘objective’’ priors lead to desirable frequentist

properties.—Many applied statisticians and ecologists

believe that flat or non-informative priors produce

Bayesian credible intervals that have properties similar

to the frequentist confidence intervals. This idea has

been touted by the advocates of the Bayesian approach

as an important point of reassurance. An irony in this

claim is that Bayesian inference seems to be justified

under frequentist principles. However, the claim is plain

wrong. The Bayesian credible intervals obtained under

flat priors can have seriously incorrect frequentist

coverage properties; the actual coverage can be sub-

stantially smaller or larger than the nominal coverage

(Mitchell 1967, Heinrich 2005; D. A. S. Fraser, N. Reid,

E. Marras, and G. Y. Yi, unpublished manuscript). A

practicing scientist should ask: Under Bayesian infer-

ential principles, what statistical properties are consid-

ered desirable for credible intervals and how does one

assure them in practice?

Non-informative priors are unique.—Many ecologists

believe that the flat priors are the only kind of

distributions that are ‘‘objective’’ priors. In fact, in

Bayesian statistics the definition of non-informative

prior has been under debate since the 1930s with no

resolution. There are many different types of proper and

improper distributions that are considered ‘‘non-infor-

mative.’’ We highly recommend that ecologists read

Chapter 5 of Press (2003) and Chapter 6 of Barnett

(1999) for a non-mathematical, easily accessible dis-

cussion on the issue of non-informative priors. For a

quick summary, see Cox (2005). Furthermore, it is also

known that different ‘‘non-informative’’ priors lead to

different posterior distributions and hence different

scientific inferences (e.g., Tyul et al. 2008). The claim

that use of non-informative priors lets the data speak is

flatly incorrect. A scientist should ask: Which non-

informative priors should ecologists be using when

analyzing data with hierarchical models?

Credible intervals are more understandable than con-

fidence intervals.—The ‘‘objective’’ credible intervals

(i.e., formed with flat priors) do not have valid

frequentist interpretation in terms of coverage. For

subjective Bayesians, the interpretation of the coverage

is in terms of ‘‘personal belief probability’’. Neither of

these interpretations is valid for the ‘‘objective’’ Baye-

sian analysis. A scientist should ask: What is the correct

way to interpret ‘‘objective’’ credible intervals?

Bayesian prediction intervals are better than frequentist

prediction intervals.—Hierarchical models enable the

researcher to predict the unobserved states of the

system. The naı̈ve frequentist prediction intervals, where

estimated parameter values are substituted as if they are

true parameter values, are correctly criticized for having

incorrect coverage probabilities. These intervals can be

corrected using bootstrap techniques (e.g., Laird and

Louis 1987). Such corrected intervals tend to have close

to nominal coverage. It is known that ‘‘objective’’

Bayesian credible intervals for parameters do not have

correct frequentist coverage. A scientist should ask: Are

prediction intervals obtained under the ‘‘objective’’

Bayesian approach guaranteed to have correct frequent-

ist properties? If not, how does one interpret the

‘‘probability’’ represented by these prediction intervals?

As sample size increases, the influence of prior

decreases rapidly.—For models that have multiple

parameters, it is usually difficult to specify non-

informative priors on all the parameters. The Bayesian
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scientists put non-informative priors on some of the

parameters and informative priors on the rest. Dennis

(2004) showed that the influence of an informative prior

can decrease extremely slowly as the sample size

increases when there are multiple parameters. We point

out that the hierarchical models being proposed in

ecology sometimes have enormous numbers of param-

eters. A scientist should ask: How does one evaluate the

influence of prior specification on the final inference?

The problem of identifiability can be surmounted by

specifying informative priors.—By definition, no exper-

imental data generated by the hierarchical model in

question can ever provide information about the non-

identifiable parameters. If this is the case, then how can

anyone have an ‘‘informed’’ guess about something that

can never be observed? Furthermore, as noted above

such ‘‘informative’’ priors can be inordinately influen-

tial, even for large samples. A scientist should ask: How

exactly does one choose a prior for a non-identifiable

parameter, and in what sense is specifying an informa-

tive prior a desirable solution for surmounting non-

identifiability?

Influence of priors on the final inference can be judged

from plots of the marginal posterior distributions.—The

true influence of the priors on the final inference is

manifested in how much the joint posterior distribution

differs from the joint prior. In practice, however,

influence of priors is judged by looking at the plots of

the marginal priors and posteriors. The marginalization

paradox (Dawid et al. 1973) suggests that the practice

could fail in spectacular ways. A scientist should ask:

How should one judge the influence of the specification

of the prior distribution on the final inference?

Bayesian posterior distributions can be used for

checking model adequacy.—Cressie et al. (2009) correctly

emphasize the importance of checking for model

adequacy in statistical inference. They suggest using

goodness of fit type tests on the Bayesian predictive

distribution. A scientist should ask: If such a test

suggests that the model is inadequate, how does one

know if the error is in the form of the likelihood function

or in the specification of the prior distribution?

Reporting sensitivity of the inferences to the specifica-

tion of the priors is adequate for scientific inference.—

Cressie et al. (2009), as well as many other Bayesian

analysts, suggest that one should conduct sensitivity of

the inferences to the specification of the priors. In our

opinion, it is not enough to simply report that the

inferences are sensitive. Inferences are guaranteed to be

sensitive to some priors and guaranteed to be non-

sensitive to some other priors. What is needed is a

suggestion as to what should be done if the inferences

are sensitive. A scientist should ask: If the inferences

prove sensitive to the particular choice of a prior, what

recourse does the researcher have?

Scientific method is better served by Bayesian ap-

proaches.—One of the most desirable properties of a

scientific study is that it be reproducible (Chang 2008).

The frequentist error rates, either the coverage proba-

bilities or probabilities of weak and misleading evidence

(Royall 2000), inform the scientists about the reprodu-

cibility of their results. A scientist should ask: How does

one quantify reproducibility when using ‘‘objective’’

Bayesian approach?

In summary, we applaud the authors for furthering

the discussion of use of hierarchical models in ecology.

While hierarchical models are useful, we cannot avoid

questioning the quality of inference that results from

hierarchy proliferation. Royall (2000) quantifies the

concept of weak inference in terms of probability of

weak evidence where, based on the observed data, one

cannot distinguish between different mechanisms with

enough confidence. We surmise that the probability of

weak evidence becomes unacceptably large as the

number of unobserved states increases. We feel that

scientists should be wary of introducing too many

hierarchies in the modeling framework. Furthermore,

we also have difficulties with the Bayesian approach

commonly used in the analysis of hierarchical models.

We suggest that the Bayesian approach is neither needed

nor is desirable to conduct proper statistical analysis of

hierarchical models. The alternative approaches based

on the frequentist philosophy of science should be

considered in analyzing the hierarchical models.
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