The Centrality of Noncentrality:
Recasting ANOVA evidentially reveals a source of the replication crisis.

. . p ni=0
Evidential moves: I
* Hypothesis testing > Model | |\ Noncentrality= 1 = n&
identification z 24 | | &%= per observation effect size
c 1 \
(3] <
* Null model: simple > composite 2 {1
= !
« Distribution used to evaluate g3
uncertainty s o]
* Central F > Noncentral F = .:
|

Classical ANOVA over-selects the null and under-estimates uncertainty!

Dennis, B.; Taper, M.L.; Ponciano, J.M. Evidential
Analysis: An Alternative to Hypothesis Testing in
Normal Linear Models. Entropy 2024, 26,
964.https://doi.org/10.3390/e26110964


dr_of_chaos@yahoo.com
Typewritten text
Dennis, B.; Taper, M.L.; Ponciano, J.M. Evidential 
Analysis: An Alternative to Hypothesis Testing in 
Normal Linear Models. Entropy 2024, 26, 
964.https://doi.org/10.3390/e26110964


‘ entropy

Article

Evidential Analysis: An Alternative to Hypothesis Testing in
Normal Linear Models

Brian Dennis 1:2*

check for
updates

Citation: Dennis, B.; Taper, M.L.;
Ponciano, ].M. Evidential Analysis:
An Alternative to Hypothesis Testing
in Normal Linear Models. Entropy
2024, 26, 964. https://doi.org/
10.3390/€26110964

Academic Editor: Lu Wei

Received: 13 August 2024
Revised: 2 November 2024
Accepted: 3 November 2024
Published: 10 November 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Mark L. Taper 3 and José M. Ponciano

4

Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID 83844, USA

Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID 83844, USA
Department of Ecology, Montana State University, Bozeman, MT 59717, USA; markltaper@gmail.com
Department of Biology, University of Florida, Gainesville, FL 32611, USA; jm.ponciano@gmail.com
Correspondence: brian@uidaho.edu

W N e

Abstract: Statistical hypothesis testing, as formalized by 20th century statisticians and taught in
college statistics courses, has been a cornerstone of 100 years of scientific progress. Nevertheless,
the methodology is increasingly questioned in many scientific disciplines. We demonstrate in this
paper how many of the worrisome aspects of statistical hypothesis testing can be ameliorated with
concepts and methods from evidential analysis. The model family we treat is the familiar normal
linear model with fixed effects, embracing multiple regression and analysis of variance, a warhorse
of everyday science in labs and field stations. Questions about study design, the applicability of the
null hypothesis, the effect size, error probabilities, evidence strength, and model misspecification
become more naturally housed in an evidential setting. We provide a completely worked example
featuring a two-way analysis of variance.

Keywords: evidence; evidence functions; linear models; Neyman-Pearson; hypothesis testing;
Kullback-Leibler; Schwarz information criterion; SIC; BIC; AIC; noncentral distribution

1. Introduction

In this paper, we construct an evidential-assessment approach to classical statistical
analyses based on the univariate normal linear model with fixed effects. The model family
includes the standard models for one- and two-sample t-tests, simple linear regression,
multiple regression, analysis of variance (ANOVA) under various experimental designs,
and models with mixed categorical and quantitative predictor variables. These models
form much of the parade of statistical methods in the usual graduate course on applied
statistics for researchers. The analysis scenarios in normal linear models are ordinarily
handled by the machinery of Neyman-Pearson (NP) hypothesis tests and accompanying
confidence intervals [1]. While the inferences in NP testing have many desirable statistical
properties, they are weighed down by some often-discussed drawbacks, namely, the fixed
Type 1 error rate (¢) not being dependent on sample size, ambiguity concerning what
constitutes evidence for the null hypothesis, controversies over the meaning of p-values,
and the possible distortion of results caused by model misspecification [1]. The evidential
approach mitigates these drawbacks of hypothesis testing.

The evidential approach to statistical inference was developed in large part by Roy-
all [2] based on earlier proposals (e.g., [3]), but the methodology was confined to models
without unknown parameters. Lele [4] and Taper and Lele [5] expanded the definition
and understanding of “evidence functions” in evidential statistics. Taper and Ponciano [6]
described and compared inference concepts under evidential analysis, frequentist analysis,
and Bayesian analysis. Comparative properties of evidence functions and NP hypothesis
testing under model misspecification were studied by Dennis et al. [7]. Estimation of differ-
ent levels of uncertainty in evidential analysis under model misspecification was described
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by Taper et al. [8]. Cahusac [9] provided a comprehensive account of how Royall’s [2]
original evidence concepts can be implemented for standard statistical analyses.

Royall’s [2] original evidence concepts were cast only for models with no unknown
parameters (so-called simple statistical hypotheses). More recently, evidential analysis is
being extended to models with unknown parameters (also known as composite hypotheses).
Specifically, evidence functions for composite models can be constructed from a class of
“information theoretic” model selection indices [7,8].

The evidential approach is implemented in the form of an evidence function: a statistic
for comparing two models by estimating, based on data, the difference of their divergences
from the data generating process, i.e., truth [4]. In a leading formulation, an evidence
function is a difference of penalized maximized log-likelihoods and is essentially a contrast
between two generalized entropy discrepancies [7,8]. A consequence of this definition is the
salient property that the probabilities of weak and misleading evidence, error probabilities
analogous to Type 1 and Type 2 errors in hypothesis testing, both approach 0 as sample size
increases. Furthermore, the conclusions of an evidential analysis retain some robustness to
model misspecification [7], while the uncertainty inherent in an evidential analysis can be
assessed under the general assumption of model misspecification [8]. Thus, the evidential
approach can remedy some shortcomings of NP hypothesis testing.

Here, we show that the concepts of evidential analysis are ready-made for, and easily
folded into, the existing hypothesis-testing framework of normal linear statistical models.
To emphasize this, our notation and development cleaves as much as possible to the stan-
dard introductory treatment of linear model theory (for example, [10,11]). Our presentation
is intended to be accessible to data analysts who are familiar with the matrix formulation
of linear models. We provide a completely worked example of evidential analysis for
a common statistical problem (two-way ANOVA) as presented in introductory statistics
courses. The example ordinarily would be handled with textbook NP hypothesis testing.
We demonstrate how study design can be based in evidential analysis on the probabilities
of misleading evidence. The overall approach can be adapted to many other statistical
models and scenarios for which power calculations are feasible.

2. The Structure of Evidential Analysis

The evidential approach to statistical inference begins with an evidence function. Two
probability models, with respective pdf’s denoted by f1(y, 61) and f>(y, 62), are under
contention as models of the probabilistic process generating observations y1,y2,- - -, yn.
Here, 6; and 0, are parameter vectors. The thematic goal of an evidential analysis for models
f1 and f, is to make a statistical inference about which model more closely resembles the
probability mechanism that generated the data. The implied model quality is measured by
some quantity defining a divergence of a model f from the true data generating mechanism
g. Here, we adopt the Kullback-Leibler (KL) divergence measure, given by

K(g f) = Eg [10g(%>} = j,g(y) 10g(fcg;> (1)

that is, the expected value of log[g(Y)/ f(Y)] with respect to pdf g, as the basis for the
methods presented in this paper. The KL divergence is also known as the cross-entropy or
the relative entropy [12]. The two probability distributions indicated by f and g could be
discrete, continuous, or mixed discrete/continuous (i.e., the expectation is a sum, integral,
or both), but they both must give positive probabilities to the same sample outcomes. The
KL divergence underlies much of maximum likelihood estimation theory for standard sta-
tistical methods [13,14]. Other divergence measures such as the Hellinger distance [4,15,16]
can be used to form evidence functions having different statistical properties better suited
to different purposes such as decreased sensitivity to outliers.

An evidence function is a statistic that confers upon the evidential analysis certain
desirable statistical properties. A full list of properties is enumerated elsewhere [6]; for
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the current discussion, the most relevant is that the probability of picking the right model
under the evidential decision rules must approach 1 as the sample size n increases.

The evidence function we use is built on the following concepts (for a more detailed
treatment, see [8]). Define AK. to be the difference of KL divergences of approximating
models f; and f, from g (the data-generating process), using the versions of f; and f»
that are “closest” to g. An evidence function, when divided by #, is a consistent statistical
estimator of AK, that is, an estimator of which model is closest to the data generating
mechanism g [4,8]. The explicit definition of AK that we adopt in this paper is as follows:

AK =K(g, fi) —K(g f3)- )

Here, f] = f] (x, 9}*) , where 9]’.‘ is the value of the parameter vector Gj that minimizes the

KL divergence of f;(x, 6;) from g(x), the best version of f; for representing truth under
the KL criterion. If f is the better model, then AK < 0, and if f; is the better model, then
AK > 0. In the classical null/alternative NP hypothesis setup with the parameter space for
f1 nested within that of f;, if fJ is within the parameter space of f;, then AK = 0, because
fi and f; are the same model. Similarly, AK = 0 when the parameter spaces of f; and
f2 are overlapping, with the best model, equivalently f; or f;, occurring in the region of
overlap.

Because the parameters in the vectors 0] and 6 are unknown, they must be estimated.
Maximum likelihood estimation provides statistically consistent estimates of 6] and 6;.
The likelihood function for the observations vy, y», - - - , ¥, under model f] is

Li(6) =TT filvi 6))- 3)

The maximum likelihood (ML) estimate 9]- is the vector of parameter values that jointly
maximize L; (Hj). The ML estimate is known to converge in probability to 6]*? [17].

A convenient evidence function based on KL divergence is the difference of Schwarz
Information Criteria (SIC’s, also known as BIC’s; [18]):

ASIC = SIC; — SIC,, (4)

where
SIC; = —2 log[L;(0;)] + r; log(n), (5)

in which L; (9]) is the maximized likelihood function for model f; (j=1,2),and rjis the
number of parameters estimated in 6;. If ASIC > 0, model 2 is estimated to be closer to g
than model 1, while if ASIC < 0, model 1 is estimated to be closer (Note: If models 1 and
2 were two of multiple models under consideration, one can denote each pairwise ASIC
value with two subscripts. In the convention proposed by Taper et al. [8], the evidence
function in Equation (7) would be written as ASIC, ;. That is to say, a positive ASIC is
evidence for the model indicated by the first subscript over the model indicated by the
second subscript. Here, we are dealing solely with the NP setup of two models, one nested
within the other, and we dispense with the subscripts to reduce clutter).

One of the advantages of using an evidence function based on SIC is that it is related
to Wilks’ [19] generalized likelihood ratio test statistic for NP hypothesis testing when one
or both models have unknown parameters. In NP hypothesis testing when models have
unknown parameters, ordinarily one of the models (the null hypothesis) is nested within
the other (the alternative hypothesis). Specifically, model 1 is formed from model 2 by
imposing one or more restrictions on parameter values, often by fixing their values equal
to known constants. Then, the vector 6; contains only the parameters from 6, that remain
unrestricted and unknown. The generalized likelihood ratio statistic is

G>= -2 loglLl (91)], (6)
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where L, is the likelihood function for the full model, and L; is the same likelihood except it
is evaluated at the restricted parameter values and maximized over the remaining unknown
parameters. It can be seen that

ASIC = G? — v log(n), )

where v = r, — r1. The consequence is that the well-studied distribution theory for G? can
be commandeered for use in evidential approaches.

An evidential analysis using an evidence function such as ASIC picks two threshold
values, k1 and k; (k1 < 0 < kp), that produce a trichotomy of outcomes [2,7]. An evidential
analysis deems there is strong evidence for model f; if ASIC < k;, strong evidence for
model f, if k; < ASIC, and weak or inconclusive evidence if k1 < ASIC < k. Taper
et al. [8] proposed four threshold k values giving five classifications (strong evidence for
model 1, prognostic evidence for model 1, weak evidence, prognostic evidence for model 2,
strong evidence for model 2) for the point value of the evidence function in order to provide
investigators with more descriptive outcomes. Additional k values are readily added to
an analysis using the methods described in this paper, so, for brevity, our discussions here
concentrate on just specifying ky and k».

As mentioned above, an evidence function endows the analysis with desirable fre-
quentist error properties. In particular, the two probabilities of misleading evidence given
by

M, = P(kp < ASIC | model f; generated the data) (8)
and
M, = P(ASIC < ki | model f, generated the data) 9)

asymptotically approach 0 as sample size n increases [2,7]. We note that when f; is nested in
f», and if AAIC, the difference of AIC values, is used as an evidence function, M; does not
go to 0 but rather approaches a positive constant value [7]. Thus, strictly speaking, AAIC
is not an evidence function but rather has properties more akin to NP hypothesis testing.
Accompanying these two error probabilities are two probabilities of weak or inconclusive
evidence, usually denoted by W; and W, corresponding to the event k1 < ASIC < kp
under models 1 and 2, respectively, and they both approach zero as sample size increases.
The probabilities V; and V; of strong, correct evidence for model j (j = 1, 2), given model j
generated the data, become

Vi=1—(W;+M;). (10)

If model j generated the data, V; is monotonically increasing and approaches 1 as sample
size increases [4,7]. Here, V stands for “veridical” or truth-like.

The choice of information index (SIC, HIC, etc. [7,8]) on which to base an evidence
function has inferential consequences. Using ASIC (Equation (7)) will weight the inference
toward simpler models and might be chosen if the investigation is averse to including
spurious predictor variables (or other model ingredients) at the cost of dis-including
predictor variables with small but real effects. An investigation interested in something
closer to pure prediction might choose an index more tolerant of low- or no-effect covariates.
Here, our use of ASIC has the advantage of allowing the structure of evidential analysis to
be portrayed, studied, and executed in the context of standard linear model theory. Use of
other evidence functions will entail a greater reliance on computer simulation [8].

A main goal of this paper is to align and compare aspects of evidential analysis with
corresponding aspects of traditional NP analysis. Consequently, we focus here on the
pre-data study design and control of error probabilities, akin to test power and test size
planning, along with the selected post-data assessment of evidence levels, akin to the role
of p-values.

An evidential analysis provides two interrelated but distinct kinds of measures, evi-
dence levels and error probabilities. Estimates of both kinds of measures are available to
the analyst post-data. Under the correct model specification, either kind of measure can
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be controlled pre-data through the adjustment of the values of k; and k. Unfortunately,
both kinds cannot be controlled pre-data simultaneously. Simulations [8] indicate that both
kinds of measures are robust to modest model misspecification but can break down under
substantial misspecification.

3. Hypothesis Tests and Evidential Analysis in Normal Linear Models

Many standard analyses in applied statistics are contained within the family of normal
linear models with fixed effects. The normal linear fixed-effects model takes data vector y
(n x 1) to have arisen from a multivariate normal distribution with mean vector Xg. and
variance—covariance matrix oI, where # is the number of observations, X is a full-column-
rank design matrix (n x r), B is a vector (r x 1) of parameters, I is the identity matrix (n x n),
and o2 is a positive scalar parameter. The individual observations in the data vector y
under the normal linear model are independent but generally not identically distributed,
having different means as prescribed by the design matrix X. The likelihood function for
the parameters given the observed data y is a multivariate normal pdf evaluated at y:

L@/ Uz) _ (ZWz)*n/z exp [_ (y—Xﬁ)’(y—Xﬁ)]_ a1

202

The estimation and NP hypothesis testing material quoted here come from standard results
in the theory of linear models (for example, [10,11]). A basic well-known result gives the
maximum likelihood (ML) estimates of B and ¢ as

B=(x'X)"'X'y, (12)

~ / ~
o? = (y—xB) (y—xB)/n. (13)
For many inferential purposes, the unbiased estimate of o> given by
7= n?fz/(n —7) (14)

is preferred, as the ML estimate of o> can substantially underestimate uncertainty when the
number of observations is not sufficiently greater than the number of estimated parameters.

For the normal linear fixed effects model, the generalized likelihood ratio statistic
(Equation (6)) for testing a constrained null vs. unconstrained alternative hypothesis is a
monotone function of an F statistic with a noncentral F distribution. An evidence function
for such a model comparison based on ASIC then becomes a monotone function of that F
statistic. Thus, the noncentral F distribution will be the go-to distribution for approaching
a linear model problem as an evidential analysis. The noncentral F is a heavy-tailed
distribution on the positive real line (Figure 1).

Specifically, if L; and L, are the maximized likelihoods under the null and alternative
models respectively, then

~

2_ Ly _ 1
G = 210g<iz =n log 1+n—rF , (15)

where F is the F statistic, and 7 — g is the number of unknown parameters in the mean of the
null model (i.e., g linear constraints are being imposed on the parameters in § in the null
model, so that g is the difference of the number of unknown parameters in the alternative
and null models). If g =1, then F = T2, where T has a noncentral T distribution.

From the relationship (Equation (7)) between ASIC and G?, the evidence function for
normal linear models based on ASIC becomes

ASIC = G? — g log(n) = n log <1 + nq—rP> — g log(n). (16)
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This evidence function based on ASIC is easily calculated from the information provided
by analysis of variance tables in standard statistical software or from straightforward

commands in computer programming languages.
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Figure 1. Probability density functions (solid curves) of the noncentral F(g, n — r, A) distribution for
various values of sample size 1 and the noncentrality parameter A, as represented in the formula for
f(u) in the text, Equation (30). Here, A = 162, which is in the common form of a simple experimental
design, where 7 is the number of observations and ¢? is a generalized squared per-observation effect
size. The cumulative distribution function of the noncentral F distribution, exemplified here as the
area under each density curve to the left of the dashed vertical line, is a monotone decreasing function
of n. Here, g = 6,7 = 12, 62 = 0.25, and n has the values 24, 36, 48, and 60. Dashed curve is the
density function for the F(g, n — r, A) distribution with n = 24 and 52 = 0 (central F distribution).
Notice that for a given effect size, the noncentral distribution increasingly diverges from the central

distribution as sample size increases.

4. Neyman-Pearson Hypothesis Test Formulations

Two different formulations of NP hypothesis tests in linear models are convenient for
alternative study with evidential analysis. The first formulation (A) makes it easy to ask
which parameters are not 0. The second formulation (B) makes it easy to identify differences
between parameters. Both formulations consider a null model having constraints on a set

of g parameters.
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(A) This formulation constructs a null hypothesis in which one or more of the parame-
ters in the vector B are set to zero, such as dropping one or more variables in a multiple
regression. Write X and S as partitioned matrixes in the form

ﬁ = |:ﬁ1:| , and X = (Xl, Xz), (]7)
B2
so that
XB = X1B1 + Xao2. (18)

Here, the vector B, (9 x 1) contains the parameters to be set to zero under the null model.
Also, the matrix X, (1 X g) contains the columns of X corresponding to the f, parameters
that are to be dropped under the null model, with 81 ((r —¢) x 1) and X; (n x (r —q))
carrying the model components to be retained under the null model. The two models
(hypotheses H; and Hj, which we often refer to as model 1 and model 2) are

Hi: B2 =0, (19)

Hz: ﬁz 75 0. (20)

From Equations (12) and (13) above, we have the ML (least squares) estimate of § and o2
under the unrestricted alternative model Hy. Model H; similarly provides its own ML
estimates as

Ok / 1y 1

B = (Xi'X1) Xi'y; (21)

ot = (y-xii) (v-xii)/n 22)

The generalized likelihood ratio statistic for testing Hy versus Hy, via Equation (15),
reduces in this formulation to a monotone function of an F statistic of the form

(B’X’y — lel’y) /q
F= . (23)
(vy - BXy)/(n-)

The F statistic (pre-data) has a noncentral F distribution, written F ~ F(gq,n —r,A) with
numerator and denominator degrees of freedom given, respectively, by g and n — r and
noncentrality parameter A given by

B (X% - XX (0% XXy

> 4)

Under the null model (H;), A = 0, and an ordinary central F statistic applies.
(B) The second formulation of hypothesis testing is convenient for testing one or more
linear contrasts among the parameters in . The two models are given by

Hi: LB =h, (25)

Hy: LB # h. (26)

Here, L is a 4 x r matrix of known constants, and h is a ¢ x 1 vector of known constants
(frequently zeros). The F statistic for testing H; versus H, becomes

Fe (LB n) (Lexx) ') B (LB—1)/q 27)
B (vy—BXy)/(n—7) ’
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with F ~ F(g, n — r, A), where the noncentrality parameter is now

(LB~ (Lxx) ') (L)
A= .

e (28)

Both versions (Equations (23) and (27)) of the F statistic are algebraically equivalent to the
familiar “reduction in variance” form given by

n—r 02 — o2
FZ( q )( o ) )

where 07 and ¢ are given, respectively, by Equations (22) and (13).

5. Closer Look at Noncentrality

One role of the noncentral F distribution in an evidential analysis is to help in selecting
the evidence cutoff values k; and k. For pre-data design purposes, the threshold values
k1 and ky can be set under the assumptions that the governing vector parameter value
lies in the null model (H;) or in the alternative model (Hjy), respectively. In evidential
practice, “in the null model” is taken to mean “within some ignorable distance of the null
model”, that is, small but negligible departures of B, from 0 are allowed as an adequate
specification of the data generating mechanism under H;. Here, evidential practice departs
substantially from NP hypothesis testing. While NP testing sets the Type 1 error probability
« based on the literal parameter constraint represented by H;j, evidential analysis, in
setting the probability of misleading evidence M, uses the practical meaning of H; as
indicating model components that can be ignored for the purposes at hand. Thus, the
correct distribution for comparing the two models is a noncentral F distribution instead of a
central F as in NP hypothesis testing. The two probabilities of misleading evidence will be
related to two tail areas under an appropriate noncentral F distribution. The probability M;
(Equation (8)) is the area to the right of k, and M, (Equation (9)) is the area to the left of k,
under the distribution of ASIC, which in turn is related to an F(q, n — r, A) distribution via
Equation (16). To set k1 and k», the appropriate value of A in the F(g, n — r, A) distribution
will depend on the investigator’s decision about the zone of indifference for H;: a zone
of parameter values representing negligible departures from H; for purposes of model
selection. In this sense, the process of setting k values resembles power calculations in NP
testing: in NP testing, one picks a sample size and a study design, under a given “effect
size” desired to be detected by the study and under a given Type 1 error rate, so as to make
the Type 2 error rate (invariably denoted B, not to be confused with the usual notation for
the parameter vector in the mean of a linear model) as small as desired. The main difference
in evidential analysis is that design, sample size, and values of k; and k; are picked so as to
make both misleading error rates (M; and Mj) as small as desired. As well, some studies
might focus on the probabilities W; and W, of weak evidence, which will be areas under
the distribution of ASIC between ki and k5.

To avail themselves of the advantages of evidential analysis over standard approaches
in the statistical canon, data analysts will need to become more familiar with noncentrality.
The noncentral versions of the F, t, and chi-square distributions that figure in statistical
hypothesis testing for power calculations and experimental design are used in evidential
analysis in both pre- and post-data roles. Pre-data, with the noncentral distributions, one
can set the evidence thresholds (k values), misleading evidence probabilities (M values),
or sample sizes necessary to attain whatever k and M values are sought. Post-data, the
noncentral distributions provide local calculations for just how secure (or insecure) the
obtained evidence is via the assessment of uncertainties in the analysis.

The task of making noncentral distributions part of statistical routine is not straight-
forward. Users of applied statistics have mostly interacted with noncentral distributions
through the complex multidimensional graphs in the back of experimental design textbooks.
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Students of linear model theory may learn the noncentral distributions in computationally
nonfriendly ways, such as expressing the noncentrality parameter in terms of the projection
of one space on another. Exacerbating the project is that different books parameterize
the noncentral distributions in different ways. While excellent software is available for
calculations with the noncentral distributions, the accompanying documentation can be
opaque about the exact details of how the noncentrality parameter is defined.

We attempt a standardization here, at least for clarifying how calculations are per-
formed in the example we present. The noncentral F distribution used in the above
formulas, abbreviated by F(v1, 12, A), has pdf given by

~3 (4 . v Y
) =Y, (3) rep+ivw) ('/1>(2+])<"2 )(2+]+2)u(vzl+f—1) (30)
=0t T(F+))T(F) \ 2 va v ,

where u is a positive real variate value for a random variable with a noncentral F random
distribution, v; and v, are positive integers, and A is a nonnegative real quantity termed
the “noncentrality parameter”. The formula is a weighted sum (mixture) of a countably
infinite number of central F distributions, with the weights being Poisson probabilities
from a Poisson distribution with a mean of A/2. The curious Poisson terms, as discrete
probabilities, seem out of place in the pdf formula, because no explicit Poisson process
is evident in data gathering, but the terms arise fundamentally from the tail-probability
relationship between the gamma (chi-square) and the Poisson distributions [20].

A main point of confusion occurs because some texts and software products define the
noncentrality parameter to be A /2 instead of A. An easy way to check which definition is
used in a computer program is to simulate many(!) values from its noncentral F distribution
and calculate the sample mean to compare with the distribution mean, noting that the
expected value for the distribution with pdf above is

B =2t @
v1(v2 —2)

provided v, > 2. For instance, with v; = 1, 1p = 3, and A = 2, the expected value for the
above distribution is 9. If, however, the noncentrality parameter is defined in the program
as{ = A/2,thenusing v; = 1, 1 = 3, and { = 2 in the programmed distribution will
produce random variates with expected values of 15. One can expect substantial variability
in the sample mean, so a large sample of variates, say 10,000, should be generated. We
note that the variance of the noncentral F distribution does not exist unless v, > 4, but the
law of large numbers (convergence of the sample mean to the distribution mean) does not
require the existence of the variance. The F distribution functions from the stats package in

R (as of version 4.4.0) use a noncentrality parameter, ncp, defined as we have.

Four aspects of the noncentrality parameter are noteworthy for evidential analysis:

(1) Sample size n does not appear explicitly in the general formula(s) for A (Equations
(24) and (28)) but is rather wrapped implicitly into the study design and hypotheses in
question. In some cases, n will explicitly pop out algebraically; in other cases, it will not. (2)
The noncentrality quantity A is often represented as a product of n and a per-observation
“effect size” (relative to 0?). The effect size has 02 in the denominator and a function of those
B parameters constrained under model 1 in the numerator. The numerator of the effect size
measures the departure of the true parameters from their constrained values under model 1
and is the squared difference of the parameter from its constrained value if model 1 posits a
constraint on a single scalar parameter. However, if the model 1 constraint is on two or more
parameters, the effect size numerator will be a quadratic form of the vector of parameters in
question, a type of generalized squared departure distance, with the quadratic form matrix
being a complicated amalgamation of the study design characteristics. The effect size aspect
of A is made more explicit below in Section 7 below. (3) The complexity of A builds up
rapidly as the number of columns of X increase. In many cases, symbolic simplification is
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not possible, and numerical calculation will be necessary. Algebraic variants of the formulas
for A are numerous, and there might be cases in which computer symbolic algebra yields
insights. (4) The classical effect size as represented by A is related to, but in general not
equal to, the KL divergence between model 1 and model 2 (see Section 6 below). Aspects
of the study design enter into A along with KL divergence, because A also embodies the
propensity for errors, that is, the ability of the number of observations as apportioned in
the design to inform about the KL divergence. Poor design decreases the effectiveness of
data in detecting a given KL divergence.

6. Relationship of Noncentrality to Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence measure is a key underpinning of much evi-
dential analysis, although alternative evidential systems can be constructed upon other
distribution divergence measures. Evidential analysis seeks to determine which of two or
more models is a better description of the probabilistic mechanism generating the data, and
the KL divergences of one model from another, and of both models from the actual data
generating mechanism, are central targets of inference [8].

Suppose f1(y) is the pdf of an n-dimensional multivariate normal distribution with
a mean vector given by y; and variance—covariance matrix given by X;, and suppose
f2(y) is also an n-dimensional multivariate normal pdf with mean vector y#; and variance—
covariance matrix X,. The KL divergence of f, from f; is the expected value of the log-
likelihood ratio, log[f1(Y)/ f2(Y)], with the expectation taken with respect to f;. For two
(nonsingular) multivariate normal pdfs, the following standard result is listed in many
references:

K(f1, f2) = ;[tr(zl_lzz) —n+ (u — m2)' Ty (1 — p2) +10g<I§;D]- (32)

The KL divergence of f; from f, simply reverses the subscripts.
Under the first formulation of hypothesis testing for linear models (Equations (19) and
(20)), Z; = Ly = 0?1, 1 = X1 B1, and pup = X1 1 + XpB,. Substituting, we find that

K(f fo) = P20 3)

KL divergences are not generally symmetric, but interestingly in this normal distribution
case, the KL divergence of fi from f; is then identical to K(f1, f2). The noncentrality
parameter (Equation (24)) written in terms of K(f1, f») becomes

-1
B X' X1 (X1'X1) X' X282
5 .
g

A =2K(f1, f2) — (34)

Here, 2K(f1, f2) = K(f1, f2) + K(f2, f1) is the symmetric KL distance.

7. Analysis and Study Design

While the broad target of evidential analysis is the difference of departures of f; and
f2 from some unknown true model g [4,8], the design of the study can be based upon the
assumption that one of the model candidates adequately approximates g, provided the
selected model is subsequently subjected to model quality probes. Under the adequate
model assumption, misleading evidence probabilities will depend on the noncentral F
distribution with noncentrality parameter A through the relationship between evidence
function ASIC and test statistic F (Equation (16)). The distribution of ASIC has the properties
that the misleading evidence probabilities M, and M; both go toward zero as sample size
increases, once the values of k; and k; are set. However, the planned values of k1, ko, M,
and M; will depend on how observations are allocated in the study design. In general, as
the planned value of n increases, A will increase, and the distance between the planned
values for k1 and k, will decrease. The term subtracted from 2K on the right side of Equation
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(34) represents a diminishment of A due to study design characteristics, a “design load”
causing an increase in the misleading error probabilities M, and M for fixed values of k;
and k».

One strategy for setting evidential benchmarks in simple designs starts by writing A
as a product of n and a per-observation relative effect size. In expressions such as Equation
(24), A is a ratio, in which the numerator is a scalar measure of information of interest to the
model selection in the form of a generalized “squared” departure of model 2 parameters
from model 1 parameters, taking into account the intrinsic limitations in the study design.
The denominator of A is the per-observation variance representing the general noise level
clouding the inference(s) in question. Thus, we see that A as represented by Equation (24)
is in the following form:

/
A
A= ﬁzazﬁ 2. (35)

Here, A is the known matrix in the numerator of Equation (24) producing the quadratic form
in B>. In many simpler designs, such as one- or two-way analysis of variance, (%) B2'AB,
is constant or approaches a constant as #n becomes large, containing for instance the pro-
portions of observations allocated by design to different treatment combinations. If the
design is complex, requiring observations allocated among many treatment combinations,
the convergence to a constant might require a large n value, and using the form of A with
the full expression for design load (Equation (24)) is recommended. For planning simpler
designs, one can write A as the product of # and a ratio:

M = né>. (36)

A=n )
The ratio numerator becomes a per-observation, generalized “squared” departure of model
2 from model 1. The denominator is the per-observation variance. The ratio itself, 52, is
the relative effect size (often termed just the “effect size”). One can predesignate a value of

(%) B>’ AB, equal to some multiple of 2, say (%) B2'ABy = 5°0?, so that A = nd?. Here,

5o represents the maximum allowable size of /B>’ AB,/n (per observation departure of
model 2 from model 1) considered consistent with model 1. Thus, for designing a study for
evidential analysis, one can fix the numerator of the relative effect size in terms of a smallest
multiple of ¢ that one desires to detect with given probabilities of misleading evidence;
for instance, A = n(0.5(7)2/ 02 = 0.25n would represent half of a standard deviation as
the largest tolerable departure of parameters consistent with model 1. In other words, if
one has a preplanned sample size n and one wanted to wanted to pick values of k; and
ky values, or if one wanted to plan the sample size with predesignated k; and k; values,
then to detect a per-observation departure of model 2 from model 1 that was 50 percent of
the observation standard deviation o, with misleading evidence probabilities M; and M,
no larger than desired, then one would work with the tail probabilities of the noncentral F
distribution with A = 0.25n. The calculations flow from the fact that the study outcome
will be deemed strong evidence for Hj if

ASIC = n log [1 + ( 1 >F] —q log(n) < ky, (37)

n—r

strong evidence for Hy if

n—r

ASIC = 1 log [1 + ( q )F] —q log(n) > ks, (38)

and weak or inconclusive evidence otherwise.
For example, suppose sample size n has been predesignated, and one wants to set a
value of k; that will render the probability M, of misleading evidence for model f; (i.e.,
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Hj) to be no larger than some specified constant, say 7,; perhaps v, = 0.05. Suppose the
smallest multiple of o one designates to delineate between models f; and f; is J; perhaps
6 = 0.5. Under model f,, the probability of misleading evidence for f; is

M, = P(ASIC < k1 ‘ fz) = P(I’l 10g[1 + (%)F] —q log(n) < k1 | fz) (39)
= P(F <tz [pi/nei/n —1] | fy).

One sets k; to ensure that M, < 7, that is, to ensure that the probability of misleading
evidence is less than some fixed known value. Find the 7, quantile, say ¥, of a noncentral
F(g, n—r, né?) distribution. That noncentral Fig, n—r, 1n6?) distribution is on the boundary
between the two models and will produce the maximum value of M, for a given n (the
left tail of the F(g, n —r, n62) distribution decreases as 6% increases). The quantile function
for the noncentral F distribution is available as the qf(, , ) function in R. The value of k; is

obtained by equating ¢, and (%) [nq/ neki/n 1} , producing

ki =n log [1 + <nq—r>lpl} — g log(n). (40)

The above value of k; then guarantees that My < ,.
The value of k; is set through similar reasoning. Under model f;, the probability of
misleading evidence for f; is

M = P(ASIC > ko | 1) = P(n log[L+ (55)F] —q log(n) > ka | )
~p(r> () b)) @

The value of k; is picked to ensure that M; < 71 (say, 71 = 0.05). Let ¢, be the (1 — 1)
quantile of the noncentral F(g, n — 7, n(52) distribution, the boundary between the two
models again providing the largest misleading error probability. Take

ky = n log [1 + (L)wz} — g log(n) 42)

to guarantee that M; < ;.

If instead k; is predesignated (predesignated evidence threshold for strong evidence
for model 1), and one wants M, say to be less than or equal to 7, one would find the value
of n that makes the left tail of an F(g, n —r, 1n6?) distribution below 1 equal to o, where

Py = (” ; r) [n?/neki/m 1. 43)

Obtaining the value of n would be a numerical root-finding calculation, using a software
routine for the cdf of a noncentral F distribution such as pf(, , ) in R. An approximate n
value can be obtained by graphing the noncentral F cdf versus a range of n values.

Likewise for predesignated k;: to attain M; < 71, find the value of n that makes the
right tail of an F(q, n — r, nd?) distribution above 1, equal to 1, where

¥y = (” ; r) [n?/meka/m 1. (44)

Interestingly, if 1 and -y, are taken to be equal, say at a value of -y, one can validly
claim in a frequentist sense (pre-data, under the assumption of correct model specification)
that “the probability of misleading evidence for this study is no larger than ", provided the
model family represented by model 2 is adequate. If vy and v, differ, then one can say “the
a priori probability of misleading evidence for this study is no larger than max(y1, 72)”.
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8. Post-Data Evaluations

Once the observations are recorded and the evidence function has made its trichoto-
mous choice between f1, f», or neither, some post-data analyses are informative. Suppose
Asic is the realized value of ASIC, the lower case denoting an outcome, not a random
variable. Suppose the outcome wound up with evidence, strong or weak, favoring one of
the models. One can calculate an analog of a p-value in hypothesis testing by determining
how extreme is the value of Asic under the disfavored model. One poses the question: if
the experiment were repeated with the disfavored model f; generating the data, what is
the largest probability that the evidence would be as misleading as Asic? The probability
in question, denoted P;, is obtained from the noncentral F(q, n —r, A) distribution, with
the noncentrality parameter A set to n62. The value § is the border of the parameter space
tolerance region separating the two models and will yield the largest probabilities of mis-
leading evidence. Note that if the true value of the effect size is near J, the distribution of
ASIC will be centered around 0; the left tail will decrease when the true effect size shifts
toward model 2 (ASIC distribution centered on the positive line), and the right tail will
decrease when the true effect size shifts in favor of model 1 (ASIC distribution centered on
the negative line). Let ‘I’( f,q n—r, n52) denote the cdf of a noncentral F(g, n —7, néz)
distribution. If model 1 is favored by Asic, we have

P, = max P(ASIC < Asic | f,) = P(n log[1+ (L) F] — g log(n) < Asic)

n—r

_ p(F < % [nq/neAsic/n _ 1}) — 1[/(% [nq/neAsic/n _ 1}, g, n—r, m;z). (45)
If model 2 is favored by Asic, we have
Py = max P(ASIC > Asic | f1) = P(n log[1+ (1) F] —q log(n) > Asic) = P(F > 2= [nie — 1] ) o

= 1=y (s [na/nedsieln — 1], g, n—r, né?) =1 P.

The value of Asic can be used for a post-data determination of the smallest value of &
for which there is strong evidence under model 1, or the largest value of § under which
there is strong evidence for model 2. In other words, the NP dilemma of what constitutes
evidence for the null hypothesis can be disentangled and studied. One takes the expressions
for P, and P; above (Equations (45) and (46)) and calculates them as functions of 6. The
levels of 4 that correspond to “strong” levels of P, or P; (however small as designated by
the investigator) are the per-observation effect sizes warranted by the data.

The prevailing distribution of ASIC under the unknown causal process g can be esti-
mated. A straightforward method of estimating the distribution of ASIC is with bootstrap-
ping, either parametric or some form of nonparametic bootstrapping. First, we describe
a parametric bootstrap, which strictly requires a correct model specification but can be
adequate under modest misspecification. We subsequently delve into an approach to
nonparametric bootstrapping.

The distribution from which the observations arose can be estimated as a multivariate
normal distribution with a mean vector of X§ and variance—covariance matrix of &I
(Equations (12) and (14); the ML-unbiased estimate of 02 is much preferred here to the ML
estimate). Of course, the observations under the modeling framework are independent,
and the joint distribution can be alternatively estimated as a product normal with the
above parameter estimates; the multivariate form is merely a convenience toward coding
brevity for simulation in computer languages that have matrix calculations and multivariate
distributions built in.

The idea is to generate B bootstrap data sets (perhaps 1000 or more) from the estimated
parametric joint distribution. Each bootstrap data set consists of a n x 1 vector. From
each bootstrap data set, one refits the two models and calculates a value of ASIC, along
with any other statistics of interest, such as the estimated KL divergence (Equation (33)
using B and & values calculated from each bootstrap sample). A graph of the empirical
distribution function (EDF) of the bootstrap ASIC values (or other statistics of interest),
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along with calculated benchmarks such as percentiles, provides insight into the uncertainty
accompanying the analyses and conclusions about the model comparison. The EDF can be
smoothed with a kernel distribution estimator of the pdf if desired. Such smoothing allows
a better estimation of probabilities (areas under pdf curves). Univariate local polynomial
kernel density estimators [21] are effective, particularly with data that is bounded (like
nonnegative distributions), or has long tails, or both.

Nonparametric bootstrapping of linear models requires attention to the model struc-
ture. Identical distribution (as opposed to independence) is only found within factor
combination cells. In regression-style studies with quantitative predictor variables, there is
often only one observation for each combination of predictor variable levels.

Permutation randomization has often and long been presented [22,23] as a viable if not
preferred technique for the nonparametric analysis of ANOVA. Permutation of observations
across factor combination cells forces the null hypothesis to be true, and as a consequence
the distribution of calculated F statistics from permuted data will approximate a central
F distribution [24]. We have argued above that for inference regarding the alternative
model, a non-central F distribution is required. Consequently, permutation is not an
appropriate tool for an evidential analysis. A bootstrap F distribution will reflect the nature
of the underlying generating process. If the generating process is truly unaffected by the
treatment, then the bootstrap F statistic distribution will mimic a central F distribution. A
2014 simulation study [24] of classical ANOVA found that both permutation and bootstrap
approaches produced reliable and accurate null-hypothesis tests; however, the power to
detect real alternatives was much greater using bootstrap rather than permutation methods.

Classical multiple regression models with quantitative predictor variables have pre-
dictor variables that are designed or undesigned. For inferences on both types of regression
models, one can use a form of semiparametric bootstrapping in which the residuals from
the fitted model are sampled with replacement (instead of sampling from the estimated nor-
mal distribution model as in parametric bootstrapping) and added to the model-estimated
expected values to construct each bootstrap data set. The inferences so constructed are
conditional on the observed values of the predictor variables. Alternatively for inferences
on models with undesigned predictor variables, one can sample with replacement the
observations themselves (each observation consisting of response and accompanying pre-
dictors) to produce an unconditional bootstrap estimate of the multivariate distribution of
the vector of response and predictors. Conditional and unconditional bootstrap inferences
for regression were treated by [8] and are, respectively, examples of “local” and “global”
inferences in evidential analyses [8].

In ANOVA-style studies with categorical predictor variables, there are generally
multiple observations within each combination of treatment levels. Multiple observations
per cell allow for some exploration of uncertainty of evidential analysis in a fashion closer
to a model-free ideal. There are various approaches to nonparametric bootstrapping of
ANOVA data, usually involving stratification of the resampling process within cells. We
presently recommend one method, described in what follows. For studies with mixed
quantitative and categorical predictor variables, the semiparametric approach can be used,
or possibly hybrid approaches can be devised.

The bootstrap we currently suggest for ANOVA-style studies has been shown to be
reliable and robust [22,23] and involves bootstrapping variance-inflated, median-centered
residuals within cells (treatment level combinations). The bootstrap is accomplished with
the following steps: (1) Calculate the median response, M,;, for each cell i. (2) Calculate
residuals in each cell i as (y;, ; — ]\7Il-> si, where s; = \/[n;/ (n; — 1)] is a scaling factor for the
residuals of cell i, with n; being the number of observations in the cell. The scaling factor
inflates the expected sample variance of the residuals in each cell to equal the population
variance for that cell. (3) Create a set of B stratified balanced bootstrapped response vectors,
y*. “Stratified” indicates that the necessary independent and identically distributed data
structure for each cell is achieved by adding to each cell median a bootstrapped set of
variance-inflated residuals drawn with replacement from the pool of the residuals for
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that cell [22,23]. “Balanced” indicates that to increase efficiency, each residual for each
observation occurs exactly B times over the entire set of B bootstrap response variables [24].
Using each bootstrapped response vector, recalculate Asic*(and whatever other quantities
might be of interest), and store the resulting B values of Asic*. (4) Produce an EDF and
summary statistics from the Asic* values (and for whatever other quantities).

Once an estimated distribution function, either parametric or nonparametric, for ASIC
is available, several other important statistics can be calculated. These include the mean and
the median values of the bootstrapped evidence levels, the bootstrap confidence intervals,
and the apparent or approximate reliability (aR) of the model identification. The aR is the
proportion of the evidence function EDF that has the same sign as the identified model.
Another interesting statistic is the estimate of AK (Equation (2)) given by

AK = Asic/n. (47)

An EDF for AK produced with values of Asic*/n, along with confidence intervals for AK,
can also be informative. Unlike Asic comparisons, which are thought to be valid only
within the same data set, AK comparisons can be made between different data sets [4], as
long as a common base for calculating logarithms has been used.

Additional post-data analyses can revolve around model evaluation. The traditional
diagnostics using residuals for normal-based models should be performed with the selected
model. Outliers and influential observations should be detected and investigated. The
designed error properties of the evidential analysis were constructed under the assumption
that one of the two normal linear model distributions is an adequate representation of the
probabilistic mechanism generating the data, and the assumption-checking analyses help
to bolster confidence in the parametric evidential results.

9. Example: Two-Factor ANOVA

A two-factor analysis of variance is a warhorse of agricultural studies in which the
response of growth or yield of the agricultural product is measured in the presence of
different levels of two categorical treatment factors (such as nitrogen and phosphorus levels).
Interactions between the factors can be estimated when the treatment level combinations
have more than one observation. Interest typically lies in which combinations of factor
levels produce the best yields. A particular concern is whether the two factors interact, that
is, whether levels of one factor affect the effect strengths of the other factor levels.

The comparison of the full linear model containing interactions with the restricted
linear model lacking interactions is conveniently accomplished with Formulation A of
hypothesis testing (Equations (19) and (20)). If Factor 1 has /; levels and Factor 2 has I,
levels, then the matrix X (in the “leave one column out” or “means” coding) will have n
rows and /1 x [ columns, consisting of a column of 1s for the intercept, (/; — 1) columns
of indicator variables for the levels of Factor 1 (each column containing 1s and 0s), (I — 1)
columns of such indicator variables for the levels of Factor 2, and (I; — 1) x (I — 1) columns
of elementwise products of all the Factor 1 and Factor 2 indicator variables representing
interactions.

For the analysis of whether interactions are important or not, model 1 has matrix
X containing just the intercept, the columns of indicator variables for Factor 1, and the
columns of indicator variables for Factor 2. The additional matrix X, in model 2 has the
interaction columns. The noncentrality quantity A (Equation (24)) is straightforward to
calculate with matrix-based computational software. However, for designing an evidential
analysis targeted at the overall interaction effect, one can specify the largest relative effect
size do of interactions acceptable for selecting the non-interaction model (model 1) and
avoid the need to calculate the A formula, provided the design is simple.

The example data ((A) in Table 1) are from Ott and Longnecker ([25]; their example
15.8) and consist of fruit yields from 24 citrus trees. The original study is not cited in the Ott
and Longnecker textbook, but the data are iconic of many such problems seen in statistics
consulting centers. Factor 1 levels are three tree varieties, and Factor 2 levels are four
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pesticide types. The design is balanced with two trees for each factor combination. Such a
design is equivalent to a one-way analysis of variance with 12 levels. In the NP hypothesis
test for interactions, the main-effects-only model (model 1) has matrix X; with six columns:
intercept column (all ones), two indicator columns (ones and zeros) designating two of
the tree varieties, and three indicator columns (ones and zeros) designating three of the
pesticide types). In the full model with interactions (model 2), the additional matrix X;
has six columns of elementwise products of each pair of indicator variables from X;. Thus,
n = 24,r =12, and g = 6. We assume that the vector y of observations arises from
a multivariate normal (X8, ¢°I) distribution, where X8 = X;B1 + X,B,. The standard
NP hypothesis test of model 1 (null) versus model 2 (alternative) uses the F test statistic
(Equation (23)) with a p-value calculated from a central F(g, n — r) distribution. The third
line of the usual ANOVA sums of squares table ((B) in Table 1) provides the result: the test
fails to reject the hypothesis of interactions (F = 1.80, p = 0.18).

Table 1. (A) Interaction in a two-way factorial study. (A) Data. The observations of the response
variable are fruit yields of 3 varieties of citrus trees (8 trees of each variety, 24 trees total). Two
trees of each variety are allocated to treatment with one of four pesticides. Data are from Ott and
Longnecker [25]. (B) Standard ANOVA table. The main effects are pesticide type (pest) and tree
variety (tree). The third line displays results of the standard F test for presence of a significant
interaction effect. (C) Results are given for values of J at 0.5, 0.94, and 1. The maximum probabilities
of misleading evidence were set at v; = 7, = 0.05. Results for each value of J include A = nd?
(noncentrality parameter for the noncentral F distribution calculated on the boundary between the
models), P, (largest probability of a more extreme value of ASIC favoring model 1 given model 2
generates the data), i1, and ¢ (respectively, the y,th and (1 — 1 )th quantiles of the noncentral F(g,
n —r, A) distribution), and kjand k; (the lower and upper threshold values indicating strong evidence
for model 1 and model 2, respectively, with the interval in between indicating inconclusive evidence).
We find that k1 < Asic < k; when § = 0.5, indicating insufficient evidence favoring either model,
while Asic < k; when § = 1, indicating strong evidence for a relative effect size of interactions less
than one standard deviation, that is, for a model 1 having relative effect size less than one standard
deviation. The smallest relative effect size for which there would be strong evidence is 6 = 0.94; the
value was found by calculating P, for a range of values of J to produce a P, value close to 0.05.

(A)

Pesticide Type 1 2 3 4

Tree 1 49, 39 50, 55 43,38 53,48

Variety 2 55, 41 67,58 53,42 85,73 Yields
3 66, 68 85,92 69, 62 85,99

(Byn=24,r=12,q=6

Source DF SS Mean Square F Value Pr>F

Pest 3 2227.458333 742.486111 17.56 0.0001

Tree 2 3996.083333 1998.041667 47.24 <0.0001

Pest x 456.916667 76.152778 1.80 0.1817

Tree

©

Asic = —3.66

) A P2 l[)l l[)z k1 k2

0.5 6 0.45 0.584 5.69 -12.9 13.3

0.94 212 0.05 1.80 11.8 —3.65 274

1.0 24 0.03 2.05 12.9 —2.16 29.2

An evidential approach allows more informative and nuanced conclusions. As we do
not have preliminary information about the data noise level as embodied in the parameter
0?2, we use the n6? formulation for A. Model 1 will be acceptable provided evidence strongly

suggests that A < né? (relative effect size of interaction is acceptably small), and model
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2 will be favored if evidence strongly suggests otherwise. The evidence function, easily
calculated from the F statistic (Equation (16)) has value Asic = —3.66. Results for three
values of 4 ((C) in Table 1) bracket the interaction strength. If the allowable relative effect
size for the null model is half of a standard deviation, then one can use 6 = 0.5. The
resulting value of the noncentrality quantity becomes A = n6% = 6. Fixing M; and M to
be no more than 0.05, the k thresholds become roughly ky = —12.9, k; = 13.3. We have
k1 < Asic < ky, indicating insufficient evidence to favor either model. However, if § = 1,
then k; = —2.16, and the data provide strong evidence that the relative effect of interactions
is no larger than one standard deviation. The value of § for which P, = 0.05 is around
J ~ 0.94.

The bootstrap EDF of ASIC reveals a slightly heavy-tailed distribution, with the
nonparametric (stratified) EDF having more extreme quantiles than the parametric EDF
(Figure 2). The parametric and nonparametric bootstrap versions were each based on
1024 bootstrap samples. The 0.05 and 0.95 quantiles are, respectively, about —10 and +16
(parametric) and —11 and +22 (nonparametric), indicating a wide variability of ASIC values
is to be expected for the sample sizes in the citrus study. The means of the bootstrapped
ASIC values of 2.7 (parametric) and 3.5 (nonparametric) both indicate weak evidence for
model 2. The aR is estimated as 0.61 by using a parametric bootstrap and 0.62 by the
non-parametric bootstrap also supports very equivocal evidence for interactions. The EDFs
reinforce the conclusion that the data were insufficient to resolve the interaction question
more sharply.

LAy

citrus data: cell size 2

—— parametric bootstrap
— — stratified bootstrap

Asic

Figure 2. Curves: Estimated cdf of ASIC for the citrus tree example (two-factor analysis of variance,
Table 1, with model 1 representing no interactions, model 2 representing interactions) using paramet-
ric (solid) and nonparametric (dashed) bootstrap with 1024 bootstrap samples. Dotted horizontal
lines depict 0.05 and 0.95 levels.

Simulation can be used to study the effect of larger sample sizes. In Figure 3, 90% con-
fidence intervals for AK are depicted when observations are added to each cell (treatment
combination). The data are simulated from the estimated model 2 (representing interac-
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AK and 90% confidence intervals
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tions). For each hypothetical sample size, confidence intervals for AK were generated with
1024 parametric and nonparametric bootstraps for the distribution of the estimate of AK
given by Equation (47).

citrus simulated data: cell sample size 2-20

---- parametric bootstrap
— stratified bootstrap
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Figure 3. The effect of sample size on the uncertainty of an evidential estimation. The data are
simulated from the estimated model 2 (representing interactions). For each data set, confidence
intervals were generated with 1024 bootstraps. To depict the expected behavior of such intervals the
confidence points from 1024 simulated data sets are averaged. The vertical lines indicate the average
90% confidence intervals. The open circles and the dashes indicate the average location of the 50%
confidence point. The solid horizontal line indicates equal evidence for model 1 and model 2. The
dotted horizontal line indicates the pseudo-true difference of Kullback-Leibler divergences in the
simulations.

To depict the expected behavior of such intervals the confidence points (0.05, 0.50,
and 0.95) from 1024 simulated data sets are averaged in Figure 3. The solid horizontal line
indicates equal evidence for model 1 and model 2. The dotted horizontal line indicates the
pseudo-true difference of KL divergences for the citrus model used in the simulations. For
cell sizes of 4 and above, the parametric and nonparametric intervals are almost identical.
Note how the evidence function based on the SIC approaches truth from below, reflecting
the complexity-averse nature of the SIC.

The nonparametric confidence interval for ASIC in Figure 2 was roughly 20% greater
than the parametric interval. The same pattern is seen in Figure 3 for the per-cell sample size
(n; = 2) in the simulations, but the difference of parametric and nonparametric intervals
rapidly dimishes as sample size increases. The result suggests that only two observations
per cell might be fundamentally uninformative about interactions, under the prevailing
level of noise in the data.

A standard interaction plot of the estimated means from the full model (model 2)
aids in the assessment of the practical distinctions between using one model or the other
(Figure 4). The interaction plot consists of lines connecting fruit yield means within levels
of one factor (here tree variety) to form profiles, plotted against the levels of the other factor



Entropy 2024, 26, 964

19 of 24

(pesticide type) used as a horizontal axis. Interactions between factors show up as lack of
parallelism in the profile segments. To Figure 4, we added a visual assessment of uncertainty
of the slopes, taken using confidence intervals for the means from the parametrically
estimated model 2. The visual impression of near-parallelism in the interaction plot
suggests that an interaction, if present, is small and that the use of the main effects model
(model 1) is not likely to be much different from the use of model 2.

Tree Type
§ _ ——1 2 ==+-3
o
00
Le)
2
>_
o
©
)
q—

Pesticide Type

Figure 4. Interaction plot. An interaction plot is a graphical display of the potential magnitude and
location of interaction in a linear model. For a two-factor ANOVA, a basic interaction plot displays a
central measure for each cell (generally mean or median) on the Y-axis plotted against a categorical
factor indicated on the X-axis. The second factor is indicated by lines joining cells that share a factor
level. If there is no interaction, these lines will be parallel. The stronger an interaction, the greater the
deviation from parallelism will be. Of course, some deviation may result from error in the estimation
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of cell central values. As consequence, interaction plots often include a display, such as a boxplot
or confidence interval, of the uncertainty in the estimate of cell central value. In this figure, we
plot 95% confidence intervals of cell means. Because replication is low (2 observations per cell), we
calculate these intervals using a pooled estimate of the standard error. We further enhance this plot
by including confidence intervals on the slope of the lines. If one considers any value within an
interval for a central value a plausible value, a line from any plausible central value to any plausible
value in the next interval represents a plausible slope. The maximum plausible slope runs from the
lower bound on the left to the upper bound on the right. Similarly, the minimum plausible slope
runs from the upper bound on the left to the lower bound on the right. If the intervals on central
values are confidence intervals, then these maximum and minimum plausible slopes are themselves
a pair confidence bounds on the slopes whose confidence level is equal to the square of the central
value interval confidence level. Since in the figure we are using 95% intervals on the cell means, the
confidence level on slopes is 90.5%. In the case study of citrus yields, the interaction plot readily
shows that small changes in the cell mean yields well within the uncertainties in cell means could
make all lines parallel. This interpretation matches the quantitative estimate of very low evidence for
interactions.

10. Discussion

The drawbacks of NP testing have been widely discussed in the literature of the
sciences and social sciences. One difficulty, from the standpoint of model selection, is that
the “null model is always false” in NP testing, and the testing results are unhelpful toward
evaluating the amount of compromise involved in using one model over the other. The
main problem is that the rigid behavioral threshold of & = 0.05 (or whatever desired test
size) in NP testing, along with the only slightly more nuanced reference to the p-value itself,
makes limited use of the information in the data. A test fails to reject the null hypothesis:
what does that really mean from the standpoint of study objectives? Confidence intervals,
as ranges of parameter values for which NP tests fail to reject the null model, are more
informative, but the 0.05 (or whatever) confidence level remains as an impediment to
interpreting the consequences of using either model.

The standard NP setup for analyzing nested linear models bases the error rate for
the decision threshold on the central F distribution (or central chi-square in other model
families). The central F distribution is based literally on the parameter constraints in the
null hypothesis: the parameter (or parameter vector) equals zero (or whatever) to all
decimal places. Somewhat concealed in the NP setup is that the null hypothesis is never
true; the implicit parameter constraints in the null hypothesis are instead a “practical set of
measure zero”. The real concern almost always revolves around whether the difference of
a parameter from zero is of practical importance. However, this concern only surfaces in
the NP setup during pre-data study design when questions are asked about how big an
effect (departure from zero) could be detected with a proposed design or sample size.

Inferences from the evidential approach differ fundamentally from those of the NP
approach. In the evidential analog of NP testing, the focus shifts from Type 1, &, and
Type 2, B, error probabilities to the probabilities M; and M, of misleading evidence under
models 1 and 2. The evidential analysis departs still further from that of NP by increasing
the focus on how much of a departure from a parameter constraint is of importance to
the investigation. The specification of a parameter zone of negligible effect for model 1
then leads then to the use of the noncentral F distribution for setting up error rates and
decision thresholds. The noncentral F distribution is heavier tailed, having a variance
greater than that of the corresponding central F distribution (Figure 1). The resulting
inferences, although often more sobering and nuanced, are of more practical value for
building more useful models.

Two approaches to the problem of defining “evidence for the null hypothesis” within
the NP framework have been proposed, namely, “equivalence testing” (e.g., [26]) and
“severity analysis” (e.g., [1,27]). Both approaches were compared with evidential analysis
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in [7]. Both approaches, besides remaining within the NP framework, use the device of
adopting a small interval or volume of parameter space representing a zone of indifference
or tolerance to departures from the null hypothesis model, similar to evidential analysis.
The two NP-based approaches differ somewhat in their emphases. Equivalence testing sets
up a pre-data zone of indifference in the role of an alternative hypothesis, and NP tests
are conducted to ascertain whether the null hypothesis of parameter difference(s) can be
rejected. Severity analysis obtains the post-data extremeness probability (like a p-value) of
the NP test statistic under the prospect of a specified departure from the null hypothesis
parameter value(s); any parameter values inside the departure are deemed to be severely
tested if the extremeness probability is high, a sort of post-data estimate of attained power.
Evidential analysis encompasses the aims of both equivalence testing and severity analysis
with the advantages of needing just a single test statistic and retaining a straightforward
inferential philosophy [28].

The specification of the tolerance zone associated with the null hypothesis is a sub-
stantial scientific challenge. The typical prescription in experimental design incorporates
preliminary information about the data variability in the proposed study. The more com-
mon practical approach we have described, of casting the tolerable per-observation effect
size in terms of a fraction of the per-observation standard deviation, can be used when little
preliminary knowledge of the level of that standard deviation is available. Scientifically, the
standard deviation has the measurement units of the response variable, and the tolerance
interval as a maximum tolerable signal-to-noise value reflects the ability of the data from
the study, so designed, to inform about the effect in question. An investigator can nowadays
easily calculate trial values of the probabilities of misleading evidence (M; and Mj) or
other relevant quantities with the corresponding noncentral F distribution, using the values
of g and r applying to the two models in contention and varying values of n and 6, to build
intuition about the study. For instance, in an ordinary one-sample, two-sided t-test for a
known constant mean versus an unknown mean, g4 and r both have the value 1. The F(1,
1/(n — 1), né?) distribution with n = 30 and 6 = 0.42 suggests that an NP one-sample t-test
with size &« = 0.05 would have a power of around 0.6 (area to the right of 4.18, which is
the critical value from the central F distribution for the square of the critical t value). By
contrast, values of 0.05 are attained for both probabilities of misleading evidence using the
threshold values for ASIC of ky = —2.94, k; = 10.90 (corresponding to F values of about
0.45 and 17.7, respectively).

Valuable information is provided by evidential analysis over and beyond NP testing.
Evidential analysis, by contrast to NP testing, provides an assessment of how large a
departure from the null hypothesis (model 1), in comparison to the general noise level of
the data, can be ruled in or ruled out. As well, evidential analysis provides a more complete
understanding of the uncertainty accompanying the results. The two-way ANOVA example
analyzed above illustrated a typical problem arising in day-to-day experimental science: an
effect, here an interaction of factors, has magnitude just off the radar in ordinary NP testing.
A p-value of 0.18 in the NP test for interaction is scientific pablum in that a mild effect of
unknown magnitude and unknown import might or might not be present. Should more
data be collected? Should the estimated alternative model be reported and used? What is
lost by using the estimated null model? In the evidential approach, the comparison of the
magnitude of the per observation effect with the per observation standard deviation helps
address these questions. The investigation can focus on how large an effect is acceptable
to be lost in noise, as the evidential analysis provides an idea of how small an effect is
warranted by the data. In addition, as represented by the bootstrap EDFs for the evidence
function, the analysis provides a clearer idea of the scale of uncertainty present in the
conclusions.

One will typically find that larger sample sizes are indicated when applying evidence
concepts to ordinary NP testing situations. This finding is not illusory. The evidential
framework takes both models seriously. For normal linear models, this requires many of the
calculations to be based on noncentral distributions. The computations are similar to power
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calculations in experimental design, which in most consulting statisticians” experiences
have not ever made any investigators happy.

Low powers, such as 0.6, are often used as design benchmarks for NP tests. This
practice does not take the alternative model seriously, and the result is higher uncertainty
about the conclusions and about replicability. The statistical distributions of evidential
quantities have heavy tails (Figures 2 and 3), and, to obtain sharp conclusions, it is not
uncommon for evidential design to call for sample sizes to be increased by an order of
magnitude, although in our example, a factor of 4 might have brought the lower end of a
90% confidence interval for AK above 0 (Figure 3).

The conclusions of NP testing depend, sometimes sensitively, on the assumption of
correct model specification. The null hypothesis in NP testing, formed for instance by
zeroing out one or more parameters, is seldom strictly correct, but parameters representing
an effect size negligible for practical purposes might belong to the model closest to the
data-generating model. With fixed test size «, an NP analysis will asymptotically reject such
an acceptable model. In an evidential analysis, there is reason to retain some confidence in
the results even in the presence of moderate violations of assumptions. If the misleading
evidence probabilities M, and M; are redefined as the probabilities of picking the model
farthest from truth g (in the KL divergence sense), then both probabilities go toward
zero as sample size increases once the values of k; and k; are set [7]. Thus, evidential
analysis retains a robustness of sorts to model misspecification. However, as the degree of
misspecification in the models increases, the uncertainty in the predicted values of M, and
M increases.

A central tenet in modern evidential statistics, at least that branch stemming from
Lele [4], is the idea that some degree of model misspecification is ubiquitous. The foun-
dational evidential concepts assume that neither model 1 nor model 2 generated the data
but rather the data came from an unknown model with pdf g(y) [4,7,8]. The popularity of
parametric statistical models has persisted long beyond the advent of bootstrapping in the
late 1970s due to the insights such models can contribute to the structure of phenomena.
However, the uncertainty of conclusions in parametric modeling is often underestimated in
the parametric framework. Thus, whenever possible, assessing uncertainty by estimating
g(y) directly, along with distributions of statistics for comparing model 1 with model 2,
using nonparametric bootstrapping seems a compelling plan [8]. There are promising
avenues toward estimating the distribution of ASIC through nonparametric bootstrap
estimation of g [8]. We see in Figure 3 that, under the correct model assumption, a partic-
ular stratified nonparametric bootstrap can recapitulate parametric confidence intervals
at astonishingly small cell sizes (echoing the conclusion of earlier work on the stratified
bootstrap [22]). Thus, an analyst can comfortably use a stratified bootstrap to add another
level of protection from the effects of misspecification.

Because of the misspecification risk, the importance of model evaluation with post-
analysis diagnostics in NP testing has been stressed widely. The validity, or lack thereof, of
the NP conclusions in any particular situation can engender much concern. An evidential
approach, by contrast, can pre-specify a zone of null hypothesis tolerance as well as explore
the strengths of evidence for other parameter zones. Model evaluation diagnostics in an
evidential analysis can thereby be focused more on the usefulness, or lack thereof, of the
candidate models.

In Section 2, “The Structure of Evidential Analysis”, we noted that an experiment
can be designed to control either model identification error probabilities or the evidence
levels differentiating models. Here, near the conclusion of this paper, we wish to draw
attention to the great similarities in the analysis post data. Under both design goals, the
analyst should report a numerical value for the evidence level differentiating the models
and confidence intervals expressing the uncertainty in this value. The analyst should also
report the apparent reliability (aR) of model identification. The interpretation of none of
these depends on the design goal. What does differ between goals is the interpretation of
the descriptor “strong evidence”. “Strong evidence” is an evidence value outside the range
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(k1, kp). With a control of error goal, “strong evidence” indicates that the probability of
model misidentification has been held below prespecified levels. With a goal of controlling
the evidence level, “strong evidence” indicates that the point estimate of the absolute
difference in the expected likelihoods of the two models is greater than the prespecified
level.

Although we have treated here an evidential approach to the classical NP setup of
two models, one nested within the other, the evidential approach extends naturally to
models that are merely overlapping and even to models that are nonoverlapping [7,8].
Such scenarios would be encountered, for instance, when selecting among many predictor
variables for inclusion in a multiple regression. The methods of using NP testing for
variable selection such as stepwise regression always seemed contrived but were the only
solutions available before the widespread adoption of model selection indexes. In the
evidential approach, such indexes are turned into evidence functions with probability
distributions and associated inferences of uncertainty. However, the distribution theory for
evidence functions in such scenarios is asymptotic (e.g., [29]), and implementations will
generally rely on bootstrapping and simulations [8].

Other families of non-normal statistical models (multinomial, Poisson, gamma, etc.)
with fixed effect covariates fall under the broad umbrella of “generalized linear models” [30].
For such models, symbolic formulas for ML estimates are usually not available, and the
numerical optimization of log-likelihood functions is employed. For NP testing (and
associated confidence intervals), exact forms of distributions for test statistics are not
available, and testing relies on asymptotic approximations. The asymptotic distribution of
the generalized likelihood ratio statistic (Equation (6)) under the null hypothesis (under
regularity conditions) is well known to be a chi-square distribution [19] and is the standard
source of p-values printed by software packages. For addressing such model comparisons
with an evidential framework, the distributions of the test statistic under the alternative
models will be central to the inferences. The asymptotic distribution of the generalized
likelihood statistic under alternative models (in a mathematically localized sense) is a
noncentral chi-square distribution [31-33]. The forms of the KL divergences, noncentrality
quantities, and the adequacy of asymptotic approximations differ among model families. A
future paper by the authors will explore many of the issues involved.
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