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Abstract
We present a nonstandard discretization method related to

the methods of Mickens and Elaydi and Sacker for con-

verting single species population models from continuous

time to discrete time. The method falls in the category of

the so-called nonstandard discretization schemes, that is

more advantageous than the classical discretization meth-

ods (such as adaptive step-size) since it allows large step

sizes. For instance, a large step size could better represent a

generation time or a time interval between empirical mea-

surements. Examples of single-species models with and

without negative density dependence, with an Allee effect,

and with an alternative positive stable equilibrium (preda-

tor pit) are studied. Comparative analyses of bifurcations

of ordinary differential equations and difference equations

show how the new discretization proposed here preserves

the dynamical properties of the continuous-time models.

Recommendations for Resource Managers
• The discretization method we propose preserves the orig-

inal dynamic properties of the continuous model, in the

sense of equilibria, their stability, and bifurcation char-

acteristics. Unlike the traditional numerical methods that

are widely used in ecology, the dynamical consistency of

our method does not depend on the size of the step size

used.

• The discretization method we propose produces solution

trajectories in a remarkable agreement with those of the

corresponding continuous models irrespective of the size

of the time interval used.
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• Results presented here will be important to future eco-

logical studies that seek to evaluate the pervasiveness

and strength of negative density dependence as well as

Allee effects, along with the prospects of alternative sta-

ble states, in natural populations.

K E Y W O R D S
discretization, difference equation, nearly exact, schemes, single-species

1 INTRODUCTION

Mickens (2002) proposed a method for converting ordinary differential equations into discrete-time

models (discretization) that have potentially important applications in population ecology. The

discretization method of Mickens is referred to in the literature as the nonstandard discretization

formulation (NSFD). NSFD is a set of rules for the construction of difference equation (DE) versions

of ordinary differential equations (ODEs) that preserve the dynamical properties of the original

continuous-time model. NSFD has been used often in applied mathematics to minimize the substantial

distorting effects that discretization can create for ODE. For example, Letellier, Elaydi, Aguirre, and

Alaoui (2004) compared the Rössler ODE system with DE versions. Also, Elaydi and Sacker (2010)

employed the NSFD method to obtain a new discrete-time population model containing both negative

density dependence (upper stable equilibrium) and strong Allee effects (lower unstable equilibrium).

As is well known, various discretizations can produce complex dynamics, and even chaos, in a

model system that originally lacked such dynamics. First-order differential equations may possess

saddle node, pitchfork, or transcritical bifurcations. A dynamically consistent discretization scheme

should produce the same type of bifurcation. First-order differential equations cannot have period

doubling bifurcation or chaos. Nevertheless, the Euler method as well as other standard discretization

schemes may produce such complex dynamics. The logistic ODE, for example, neither chaotic,

nor do trajectories oscillate, yet discretization methods commonly used by ecologists produce DE

versions having damped cycles, limit cycles, or chaotic behavior, see May (1976). The development

of data bases of time series observations of population abundances has inspired large-scale statistical

analyses (see Sibley, Barker, Denham, Hone, & Pagel, 2005) to assess the pervasiveness and strength

of dynamical properties such as negative density dependence and Allee effects in natural populations.

Such studies require discrete-time population models to serve as the basis for time series analyses;

yet, the models can contain extra complex dynamics that are not at issue scientifically. Moreover,

discrete-time population models can also help explain underlying phenomena such as an Allee effect

that appear from observations such as in Dai, Vorselen, Korolev, and Gore (2012). In the present

work, we propose a discretization method, which we call nearly exact discretization scheme (NEDS)

that would be simple and useful for such statistical analyses.

The importance of NEDS is that it captures and preserves the stability and bifurcation of equilib-

rium points. Moreover, when a nonlinear system cannot be linearized, NEDS provides insight into

the dynamics of the models which would have been otherwise difficult to obtain with an ODE model.

Another advantage of NEDS is that, unlike other discretization methods (including adaptive step-size),

it allows for large time steps, which in practice can represent a generation time or the period of some
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empirical measurements. In this paper, we will examine different single-species ODE models used in

population ecology in order to compare the dynamics of their ODE versions and their corresponding

DE systems. In Section 2, we propose a general framework for NEDS schemes, while in Section 3,

we make a comparative study of the dynamics of ODE and DE models. In Section 4, we recall the

elementary theory of bifurcation for DE models while in Section 5, we propose applications of the

NEDS. In Section 5, we provide some concluding remarks.

2 UNDERSTANDING NEDS

Let 𝑥 be a quantity that changes over time. The ODE notation of 𝑥 is 𝑥(𝑡) whereas the DE notation for

𝑥 is 𝑥𝑡. Consider also an ODE of the form

𝑑𝑥

𝑑𝑡
= 𝑓 (𝑥(𝑡)), (1)

where 𝑓 (𝑥) is a real-valued function of 𝑥. We propose a series of guidelines on how to obtain a DE

from an ODE such as in (1) using the following definitions

Definition 1. A discretization scheme will be called dynamically consistent if the following hold:

A1: The stability of the ODE and DE are the same.

A2: The bifurcation of the ODE and DE are the same.

A3: If two ODEs are equivalent through reparametrization, then the resulting DEs must be equivalent

through the same reparametrization.

Definition 2. A discretization scheme is called an NEDS if it is dynamically consistent and the trajec-

tories of the resulting DE are the same or “nearly” the same as those of ODE.

Definition 3. To simplify our analysis, we will say that the RHS 𝑓 in equation (1) is 𝑇1 if 𝑓 (𝑥) =
𝑟𝑥 + 𝑔(𝑥)𝑥 and is 𝑇2 if 𝑓 (𝑥) = 𝑟𝑥 − 𝑔(𝑥)𝑥, where 𝑟 is a nonzero real constant and 𝑔(𝑥) a real-valued

function.

A NEDS of the ODE in (1) can be obtained using the following principles:

P1: The derivative
𝑑𝑥

𝑑𝑡
can be discretized as

𝑥𝑡+1 − 𝑥𝑡

𝜙(ℎ)
, (2)

where 𝜙 depends on a step size ℎ and other parameters, and is given as

𝜙(ℎ) = ℎ + O(ℎ2) as ℎ → 0+.

P2: We define

𝜙(ℎ) = 𝑒𝑟ℎ − 1
𝑟

.
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We write 𝑓 (𝑥) in equation (1) in the following form: 𝑓 (𝑥) = 𝑟𝑥 ± 𝑔(𝑥)𝑥, where 𝑔(𝑥) is a function

that has no linear terms. Thus,

𝑥𝑡+1 − 𝑥𝑡

𝜙(ℎ)
=
{
𝑟𝑥𝑡 + 𝑔(𝑥𝑡)𝑥𝑡, if 𝑓 is 𝑇1
𝑟𝑥𝑡 − 𝑔(𝑥𝑡)𝑥𝑡+1, if 𝑓 is 𝑇2

.

In this case the resulting DE is

𝑥𝑡+1 = 𝑓0(𝑥𝑡) =

{
𝑒𝑟ℎ𝑥𝑡 + 𝜙(ℎ)𝑔(𝑥𝑡)𝑥𝑡, if 𝑓 is 𝑇1

𝑒𝑟ℎ𝑥𝑡

1+𝜙(ℎ)𝑔(𝑥𝑡)
, if 𝑓 is 𝑇2

. (3)

P3: If the RHS of (1) is of the form 𝑓 (𝑥) = 𝑟 ± 𝑔(𝑥)𝑥, then we make a change of variable 𝑢 = 𝑥 − 𝑥∗,

where 𝑥∗ is a nonzero fixed point of the ODE. Then resulting ODE will be of the form 𝑓 (𝑥) =
𝑟𝑥 ± 𝑔(𝑥)𝑥.

P4: If 𝑓 (𝑥) does not have any of the forms proposed above, then

we write

𝑓 (𝑥) = 𝑟𝑥 − 𝑔(𝑥)𝑥,

where

𝑟 = 𝑘(−𝑥∗)𝑘−1𝑓 (𝑘)(𝑥∗), with 𝑘 = min{𝛼 > 0 ∶ 𝑓 (𝛼)(𝑥∗) ≠ 0}.

Definition 4. (Mickens, 2002) A discretization scheme is called a nonstandard scheme (NSFD) if it

satisfies A1 and P1.

Remark 5.

1. The linear case 𝑓 (𝑥) = 𝑟𝑥 represents exponential growth models whereas nonlinearity in 𝑓 (𝑥)
expresses a departure from exponential growth.

2. In the case where 𝑓 (𝑥) = 𝑟𝑥 + 𝑔(𝑥)𝑥, 𝑔(𝑥)𝑥 is a positive departure from exponential growth and

only depends on the size of the population at time 𝑡.

3. In the case, 𝑓 (𝑥) = 𝑟𝑥 − 𝑔(𝑥)𝑥, 𝑔(𝑥)𝑥, a negative departure from exponential growth and is blended

between 𝑡 and 𝑡 + 1 so as to avoid potential overcompensation.

Remark 6. An important difference between NSFD and NEDS is that the discretization of the ODE

when 𝑓 is 𝑇1 would produce the DE

𝑥𝑡+1 = 𝑓0(𝑥𝑡) =
𝑒𝑟ℎ𝑥𝑡

1 − 𝜙(ℎ)𝑔(𝑥𝑡)
. (4)

We note that 𝑥𝑡+1 becomes negative or infinite if 𝑔(𝑥𝑡) ≤
𝑟

𝑒𝑟ℎ − 1
. This does not occurs with NEDS.

This gives another piece of evidence that NEDS is better in some cases than NSFD, see example (11).

3 DYNAMICS OF THE ODE AND DE MODELS

In the sequel, we provide the main results on the stability of the ODE and DE models, when the RHS

of (1) is of the form 𝑓 (𝑥) = 𝑟𝑥 ± 𝑔(𝑥)𝑥.
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Lemma 7 (Fixed Points). If 𝑓 is either 𝑇1 or 𝑇2, then the fixed points of the ODE and the DE given as

𝑥∗ = 0 or 𝑔(𝑥∗) = ±𝑟. (5)

Theorem 8 (Asymptotic stability of the ODE model). The fixed point 𝑥∗ = 0 is asymptotically stable
if and only if the following hold true:{

𝑟 + 𝑔(0) < 0 if 𝑓 is 𝑇1
𝑟 − 𝑔(0) < 0 if 𝑓 is 𝑇2

. (6)

A nonzero fixed point 𝑥∗ of the ODE is asymptotically stable if and only if

𝑥∗𝑔′(𝑥∗) > 0. (7)

Proof. We know that a fixed points 𝑥∗ of the ODE is asymptotically stable if 𝑓 ′(𝑥∗) < 0 and unstable

if 𝑓 ′(𝑥∗) > 0. For 𝑥∗ = 0, we have

𝑓 ′(0) = 𝑟 ± 𝑔(0).

So,

𝑓 ′(0) < 0 if 𝑟 + 𝑔(0) < 0 and 𝑓 is 𝑇1, and 𝑓 ′(0) < 0 if 𝑟 − 𝑔(0) < 0 and 𝑓 is 𝑇2.

For 𝑥∗ ≠ 0, we have

𝑓 ′(𝑥∗) = −𝑥∗𝑔′(𝑥∗).

Then clearly,

𝑓 ′(𝑥∗) < 0 if and only 𝑥∗𝑔′(𝑥∗) > 0. (8)

■

Theorem 9 (Asymptotic stability of the DE model). The fixed point 𝑥∗ = 0 is asymptotically stable
if and only if the following conditions hold true:

𝑟 >
𝑒𝑟ℎ − 1
𝑒𝑟ℎ + 1

𝑔(0) and

{
𝑟 + 𝑔(0) < 0 if 𝑓 is 𝑇1
𝑟 − 𝑔(0) < 0 if 𝑓 is 𝑇2

. (9)

A nonzero fixed 𝑥∗ is asymptotically stable if and only if the following conditions hold true:

𝑥∗𝑔′(𝑥∗) > 0 and

{
𝜙(ℎ)𝑔′(𝑥∗)𝑥∗ > −2 if 𝑓 is 𝑇1
𝜙(ℎ)𝑒−𝑟ℎ𝑔′(𝑥∗)𝑥∗ < 2 if 𝑓 is 𝑇2

. (10)

Proof. Fixed points 𝑥∗ of DE are asymptotically stable if and only if |𝑓 ′
0(𝑥

∗)| < 1.

Case 1. 𝑓 is 𝑇1. In this case 𝑓0(𝑥) = 𝑒𝑟ℎ𝑥 + 𝜙(ℎ)𝑔(𝑥)𝑥 where 𝜙(ℎ) = 𝑒𝑟ℎ−1
𝑟

.
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For 𝑥∗ ≠ 0,

𝑓 ′
0(𝑥

∗) = 𝑒𝑟ℎ + 𝜙(ℎ)[𝑔′(𝑥∗)𝑥∗ + 𝑔(𝑥∗)]

= 𝑒𝑟ℎ + 𝜙(ℎ)
[
𝑔′(𝑥∗)𝑥∗ − 𝑟

]
= 𝜙(ℎ)𝑔′(𝑥∗)𝑥∗ + 1.

It follows that |𝑓 ′
0(𝑥

∗)| < 1 if and only

𝑥∗𝑔′(𝑥∗) > 0 and 𝜙(ℎ)𝑔(𝑥∗)𝑥∗ > −2.

For 𝑥∗ = 0,

𝑓 ′
0(0) = 𝑒𝑟ℎ + 𝜙(ℎ)𝑔(0).

Thus,

|𝑓 ′
0(0)| < 1 if and only if 𝑟 + 𝑔(0) < 0 and 𝑟 >

1 − 𝑒𝑟ℎ

1 + 𝑒𝑟ℎ
𝑔(0).

Case 2. 𝑓 is 𝑇2. In this case, 𝑓0(𝑥) =
𝑒𝑟ℎ𝑥

1 + 𝜙(ℎ)𝑔(𝑥)
.

For 𝑥∗ ≠ 0,

𝑓 ′
0(𝑥

∗) = 𝑒𝑟ℎ[1 + 𝜙(ℎ)𝑔(𝑥∗)] − 𝜙(ℎ)𝑒𝑟ℎ𝑔′(𝑥∗)𝑥∗

[1 + 𝜙(ℎ)𝑔(𝑥∗)]2

= 1 − 𝑒𝑟ℎ − 1
𝑟𝑒𝑟ℎ

𝑔′(𝑥∗)𝑥∗.

It follows that |𝑓 ′
0(𝑥

∗)| < 1 if and only

𝑥∗𝑔′(𝑥∗) > 0 and 𝜙(ℎ)𝑒−𝑟ℎ𝑔(𝑥∗)𝑥∗ < 2.

For 𝑥∗ = 0,

𝑓 ′
0(0) =

𝑒𝑟ℎ

1 + 𝜙(ℎ)𝑔(0)
.

Thus,

|𝑓 ′
0(0)| < 1 if and only if 𝑟 − 𝑔(0) < 0 and 𝑟 >

1 − 𝑒𝑟ℎ

1 + 𝑒𝑟ℎ
𝑔(0).

■

Remark 10.

1. We note that there is only one condition for the stability of the positive fixed point in the ODE which

is 𝑥∗𝑔′(𝑥∗) > 0 while in the DE, we need extra conditions:

𝜙(ℎ)𝑔′(𝑥∗)𝑥∗ > −2 if 𝑓 is 𝑇1 and 𝜙(ℎ)𝑒−𝑟ℎ𝑔′(𝑥∗)𝑥∗ < 2 if 𝑓 is 𝑇2.



KWESSI ET AL. 7 of 22Natural Resource Modeling

Saddle node Bifurcation

μ

xt Stable xt = μ

Unstable xt = − μ

Transcritical Bifurcation

μ

xt

Unstable

Stable

xt = μ

Pitchfork Bifurcation

μ

xt Stable xt
2 = μ

Stable

Stable Unstable

F I G U R E 1 Different types of bifurcation in the discrete case. We used the model 𝑥𝑡+1 =
𝜇+𝑥𝑡
1+𝑥𝑡

for the saddle node

bifurcation, the model 𝑥𝑡+1 =
(𝜇+1)𝑥𝑡
1+𝑥𝑡

for the transcritical bifurcation, and the model 𝑥𝑡+1 =
(𝜇+1)𝑥𝑡
1+𝑥2

𝑡

for the pitchfork bifur-

cation. For each case, the dashed curve is the unstable manifold whereas the solid curve is the stable manifold

2. However, in most examples, these two conditions are always satisfied so that the ODE and the DE

have the same dynamics.

4 ELEMENTARY THEORY OF BIFURCATION FOR DE

Definition 11. Let 𝑥𝑡 = 𝑓0(𝑥𝑡, 𝜇). Then we say that 𝑥∗ is a bifurcation point and 𝜇∗ is a bifurcation

value if

(i) 𝑓0(𝑥∗, 𝜇∗) = 𝑥∗,

(ii) 𝜕

𝜕𝑥
𝑓0(𝑥∗, 𝜇∗) = 1.

There are also three types of bifurcation (Figure 1) as in the continuous case:

1. Saddle-node bifurcation

𝜕

𝜕𝜇
𝑓0(𝑥∗, 𝜇∗) ≠ 0 and

𝜕2

𝜕𝑥2
𝑓0(𝑥∗, 𝜇∗) ≠ 0.

2. Transcritical bifurcation

𝜕

𝜕𝜇
𝑓0(𝑥∗, 𝜇∗) = 0 and

𝜕2

𝜕𝑥2
𝑓0(𝑥∗, 𝜇∗) ≠ 0.

3. Pitchfork bifurcation

𝜕

𝜕𝜇
𝑓0(𝑥∗, 𝜇∗) = 0 and

𝜕2

𝜕𝑥2
𝑓0(𝑥∗, 𝜇∗) = 0.
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5 APPLICATIONS

In the applications below, we encounter saddle-node and transcritical. We note that pitchfork bifurca-

tions are rare in biological population models. However, there are examples of pitchfork bifurcations in

physics, such as the bending of a slender wooden ruler (seeOster and Alberch, 1982; Strogatz, 1994).

5.1 A model of type 𝑻𝟏

Consider the model

𝑑𝑥

𝑑𝑡
= 𝑟𝑥 + 𝑥3, (11)

where 𝑟 is a nonzero real constant. Applying the NEDS with 𝑔(𝑥) = 𝑥2 and 𝜙(𝑟) = 𝑒𝑟ℎ−1
𝑟

, we obtain

the DE model

𝑥𝑡+1 = 𝑓0(𝑥𝑡) = 𝑒𝑟ℎ𝑥𝑡 +
𝑒𝑟ℎ − 1

𝑟
𝑥3
𝑡
. (12)

The equilibrium points are 𝑥∗1 = 0, 𝑥∗2 = −
√
−𝑟, and 𝑥∗3 =

√
−𝑟 when 𝑟 < 0, and only 𝑥∗1 = 0 when

𝑟 > 0. Now for the case 𝑟 > 0, the equilibrium point 𝑥∗1 = 0 is unstable. However, for 𝑟 < 0, since 𝑓 is

𝑇1, it follows that (a) 𝑥∗1 = 0 is asymptotically stable and (b) both 𝑥∗2 and 𝑥∗3 are unstable.

A remark is in order now. One would wonder why we chose this way of discretizing 𝑥3. Indeed, one

could discretize the nonlinear term 𝑥3 in several ways

(a) 𝑥3
𝑡

(NEDS),

(b) 𝑥𝑡+1𝑥
2
𝑡

(NSFD),

(c) 2𝑥3
𝑡
− 𝑥𝑡+1𝑥

2
𝑡

(NSFD1),

and a plethora of other ways. If one chooses method (𝑏), we get the equation

𝑥𝑡+1 = 𝑓0(𝑥𝑡) =
𝑒𝑟ℎ𝑥𝑡

1 − 𝑒𝑟ℎ−1
𝑟

𝑥2
𝑡

. (13)

Observe that there is a critical value 𝑥̂0 =
√

𝑟

𝑒𝑟ℎ−1 at which 𝑥̂1 tends to ∞, for 𝑟 > 0. Moreover, for

𝑥0 > 𝑥̂0, 𝑥1 has a negative value (see Figure 9). Hence, this is not a good way to discretize. On the

other hand, if one chooses method (𝑐), we get the equation

𝑥𝑡+1 = 𝑓0(𝑥𝑡) =
𝑒𝑟ℎ𝑥𝑡 + 2 𝑒𝑟ℎ−1

𝑟
𝑥3
𝑡

1 + 𝑒𝑟ℎ−1
𝑟

𝑥2
𝑡

. (14)

Let us now compare the time series of this last model, which we will label NSFD1, with that of our

NEDS, and with the exact times series. Note that the exact solution of the differential equation is given

by

𝑥(𝑡) =
√
−𝑟 𝑥(0)√

𝑥2(0) − (𝑟 + 𝑥2(0))𝑒−2𝑟𝑡
. (15)
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0 20 40 60 80 100

−
50

0
−

30
0

−
10

0

t
x t

NEDS
NSFD

F I G U R E 2 Comparison of the times series of model (11) between the NEDS (green) and NSFD (magenta), for

𝑟 = 2.5, 𝑥0 = 𝑥0 − 0.01, and ℎ = 1. We observe that for the NEDS, 𝑥𝑡 remains at 0 whereas for the NSFD, it becomes

negative

−4 −3 −2 −1

−
1

0
1

2
3

4

r

X
t

Euler
Runge Kutta
NEDS
Mickens

F I G U R E 3 Bifurcation diagrams for the model in (1) using the Euler, the second-order Runge–Kutta, and the

NEDS method. We fixed ℎ = 1. We note also that the Euler and second-order Runge–Kutta methods have a chaotic

behavior for values of 𝑟 < −2, whereas the NEDS has no chaos for the same values, similar to the original ODE. Also,

for the Euler method, chaos occurs much earlier than for the Runge–Kutta method

We see from the figure below that the times series for NEDS is almost identical to the exact times series

of the model (see the Figure 4 above).

Figure 3 and Figure 5 below shows the superiority of the NEDS method over traditional discretiza-

tion methods such as Euler and the second-order Runge–Kutta methods. There is an agreement between

NSFD (method (c)) and NEDS, for 𝑟 < 0 and for a starting point not near the critical point 𝑥̂0.

5.2 Exponential growth model
Consider the differential equation

𝑑𝑥

𝑑𝑡
= 𝑟𝑥, (16)

where 𝑟 is a real constant. Applying NEDS with 𝑔(𝑥) = 0 and 𝜙(ℎ) = 𝑒𝑟ℎ−1
𝑟

, we get the DE

𝑥𝑡+1 = 𝑒𝑟ℎ𝑥𝑡. (17)



10 of 22 KWESSI ET AL.Natural Resource Modeling

0 20 40 60 80
0.

0
0.

4
0.

8

Exact Function

t

X
t

0 20 40 60 80

0.
0

0.
4

0.
8

NEDS

t

X
t

0 20 40 60 80

0.
0

0.
4

0.
8

NSFD

t

X
t

0 20 40 60 80

0.
0

0.
4

0.
8

NSFD1

t

X
t

F I G U R E 4 In this figure, we see that the NSFD, NSFD1, and the NEDS methods produce similar times series

compared to the original, for 𝑥0 = 1.1, 𝑟 = −3, and ℎ = 1

We observe from (17) that

𝑥𝑡 = 𝑥0𝑒
𝑟ℎ𝑡 or 𝑥(𝑡ℎ) = 𝑥0𝑒

𝑟ℎ𝑡,

which is the exact solution of the ODE.

5.3 Logistic model
Consider the differential equation, proposed by Verhulst (1838),

𝑑𝑥

𝑑𝑡
= 𝑓 (𝑥) = 𝑟𝑥

(
1 − 𝑥

𝐾

)
, (18)

where 𝑟, 𝐾 > 0 are real constants.

The fixed points are 𝑥∗1 = 0 and 𝑥∗2 = 𝐾 . 𝑓 (𝑥) is of the form proposed above with 𝑔(𝑥) = 𝑟
𝑥

𝐾
. Thus,

from the condition in (11), 𝑥∗2 = 𝐾 is asymptotically stable since

𝑥∗2𝑔
′(𝑥∗2) = 𝑟𝐾 > 0.

Applying the discretization scheme proposed above with 𝜙(ℎ) = 𝑒𝑟ℎ−1
𝑟

and 𝑔(𝑥) = 𝑟
𝑥

𝐾
, where 𝑔(𝑥)𝑥 is

discretized as 𝑔(𝑥𝑡)𝑥𝑡+1, we have the DE

𝑥𝑡+1 =
𝐾𝑒𝑟ℎ𝑥𝑡

𝐾 + (𝑒𝑟ℎ − 1)𝑥𝑡
. (19)
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We observe that there are two fixed points 𝑥∗ = 0 and 𝑥∗ = 𝐾 . For 𝑥∗ = 𝐾 , we have that 𝑔′(𝑥∗) = 𝑟

𝐾
.

If 𝑟 > 0, the condition in equation (10) is

𝜙(ℎ)𝑒−𝑟ℎ𝑔′(𝐾)𝐾 = 1 − 1
𝑒𝑟ℎ

< 1 < 2.

It follows that 𝐾 is asymptotically stable.

We observe that the exact solution of (18) is a the well-known Beverton–Holt model given as

𝑥(𝑡) = 𝑥(0)
𝐾−1𝑥(0) + (1 −𝐾−1𝑥(0))𝑒−𝑟ℎ𝑡

.

Now show that (19) yields the same exact solution. In equation (19), put 𝑦𝑡 =
1
𝑥𝑡

. Then, we will have

1
𝑥𝑡+1

= 𝑦𝑡+1 =
𝐾

𝑥𝑡
+ 𝑒𝑟ℎ − 1

𝐾𝑒𝑟ℎ
= 𝑒−𝑟ℎ𝑦𝑡 +

1 − 𝑒−𝑟ℎ

𝐾
. (20)

We know that a recurrence formula of the form 𝑦𝑡+1 = 𝑎𝑦𝑡 + 𝑏 will yield

𝑦𝑡 = 𝑎𝑡𝑦0 + 𝑏
1 − 𝑎𝑡

1 − 𝑎
. (21)

Using the latter expression with 𝑎 = 𝑒−𝑟ℎ and 𝑏 = 1−𝑒−𝑟ℎ
𝐾

, we will have

𝑦𝑡 = 𝑒−𝑟ℎ𝑡𝑦0 +
1 − 𝑒−𝑟ℎ𝑡

𝐾
.

Using 𝑦𝑡 =
1
𝑥𝑡

, we obtain

𝑥𝑡 =
𝑥0

𝐾−1𝑥0 + (1 −𝐾−1𝑥0)𝑒−𝑟ℎ𝑡
.

This proves that the DE obtained will have the same dynamics as the ODE it was derived from.

5.4 Gompertz model
Consider the differential equation (see Gompertz, 1825),

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 (ln𝐾 − ln 𝑥) , (22)

where 𝑎,𝐾 are positive real constants. Let 𝑢 = ln 𝑥
ln𝐾

. Then,
𝑑𝑢

𝑑𝑡
= 1

𝑥 ln𝐾
𝑑𝑥

𝑑𝑡
. Therefore, equation (22)

becomes

𝑑𝑢

𝑑𝑡
= 𝑎 − 𝑎𝑢. (23)

Solving this equation, we obtain the exact solution

𝑢(𝑡) = 1 − (1 − 𝑢0)𝑒−𝑎𝑡.
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Rewriting the latter in terms of 𝑥(𝑡), we have

𝑥(𝑡) = 𝑒
ln𝐾

[
1−

(
1− ln 𝑥(0)

ln𝐾

)
𝑒−𝑎𝑡

]

= 𝐾

[
1−

(
1− ln 𝑥(0)

ln𝐾

)
𝑒−𝑎𝑡

]
= 𝐾1−𝑒−𝑎𝑡𝐾

ln 𝑥(0)
ln𝐾 𝑒−𝑎𝑡

= 𝐾1−𝑒−𝑎𝑡𝑒ln 𝑥(0)⋅𝑒
−𝑎𝑡

= 𝐾1−𝑒−𝑎𝑡𝑥(0)𝑒−𝑎𝑡

= 𝑥(0) ⋅
(
𝐾−1𝑥(0)

)𝑒−𝑎𝑡−1
.

So finally, we can write

𝑥(𝑡) = 𝑥(0) ⋅
(
𝐾−1𝑥(0)

)𝑒−𝑎𝑡−1
. (24)

Applying the NEDS scheme proposed above with 𝑔(𝑥) = 𝑎, 𝑟 = −𝑎, and 𝜙(ℎ) = 1−𝑒−𝑎ℎ
𝑎

, we obtain

𝑢𝑡+1 = 𝑒−𝑎ℎ𝑢𝑡 + 1 − 𝑒−𝑎ℎ. (25)

We will show that this DE model will yield the exact trajectories of the ODE model. To do so, we use

equation (25) to obtain

𝑢𝑡 = 𝑒−𝑎ℎ𝑡𝑢0 + 1 − 𝑒−𝑎ℎ𝑡.

Rewriting in terms of 𝑥𝑡, we will have

𝑥𝑡 = 𝑒
ln𝐾

[
1−𝑒−𝑎ℎ𝑡+𝑒−𝑎𝑡ℎ ln 𝑥0

ln𝐾

]

= 𝐾

[
1−𝑒−𝑎ℎ𝑡+

( ln 𝑥0
ln𝐾

)
⋅𝑒−𝑎𝑡ℎ

]

= 𝐾1−𝑒−𝑎ℎ𝑡 ⋅𝐾

( ln 𝑥0
ln𝐾

)
⋅𝑒−𝑎𝑡ℎ

= 𝐾1−𝑒−𝑎ℎ𝑡 ⋅ 𝑥𝑒
−𝑎ℎ𝑡

0

= 𝑥0 ⋅
(
𝐾−1𝑥0

)𝑒−𝑎ℎ𝑡−1
.

The latter is equivalent to equation (24) and therefore the dynamics will be the same between the DE

and the ODE model.

Clearly, the fixed points are 𝑥∗1 = 0 and 𝑥∗2 = 𝐾 for both the ODE and the DE. The criteria for

asymptotic stability of 𝐾 is 0 < 𝑎 < 2.

5.5 Theta-logistic model
Consider the differential equation (see Gilpin & Ayala, 1973; Verhulst, 1838),

𝑑𝑥

𝑑𝑡
= 𝑓 (𝑥) = 𝑟𝑥

[
1 −

(
𝑥

𝐾

)𝜃
]
, (26)
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where 𝑟, 𝐾 , and 𝜃 are real constants.

Let 𝑦 = 1
𝑥𝜃

. Then
𝑑𝑦

𝑑𝑡
= −𝜃

𝑥𝜃+1
𝑑𝑥

𝑑𝑡
. Therefore, equation (26) becomes

𝑑𝑦

𝑑𝑡
= 𝑟𝜃

𝐾𝜃
− 𝑟𝜃𝑦. (27)

We know that differential equations of the form
𝑑𝑦

𝑑𝑡
= 𝑎𝑦 + 𝑏 have solutions

𝑦(𝑡) = 𝑦0𝑒
𝑎𝑡 + 𝑏

𝑎

(
𝑒𝑎𝑡 − 1

)
.

Applying this with 𝑎 = −𝑟𝜃 and 𝑏 = 𝑟𝜃

𝐾𝜃
, we have

𝑦(𝑡) = 𝑦(0)𝑒−𝑟𝜃𝑡 + 1 − 𝑒−𝑟𝜃𝑡

𝐾𝜃
. (28)

Rewriting in terms of 𝑥𝑡, we will have the exact solution

𝑥(𝑡) = 𝑥(0)[
𝐾−1𝑥(0) + (1 −𝐾−1𝑥(0))𝑒−𝑟𝜃𝑡

] 1
𝜃

. (29)

Applying the discretization scheme above on equation (27) with 𝑔(𝑦) = 𝑟𝜃

𝐾𝜃
and 𝜙(ℎ) = 1−𝑒−𝑟𝜃ℎ

𝑟𝜃
, we

have

𝑦𝑡+1 = 𝑒−𝑟𝜃ℎ𝑦𝑡 +
1 − 𝑒−𝑟𝜃ℎ

𝐾𝜃
. (30)

Using a similar technique as in the Gompertz model, we will obtain

𝑦𝑡 = 𝑒−𝑟𝜃ℎ𝑡𝑦0 −
1 − 𝑒−𝑟𝜃ℎ𝑡

𝐾𝜃
. (31)

Rewriting in terms of 𝑥𝑡, we will obtain

𝑥𝑡 =
𝑥0[

𝐾−1𝑥0 + (1 −𝐾−1𝑥0)𝑒−𝑟𝜃𝑡
] 1
𝜃

. (32)

This again is similar to equation (29) and so the dynamics is the same for the DE and the ODE. The

table below summarize how the logistic, Gompertz, and Theta-logistic models are related, therefore

illustrating A3 in Definition 1.

5.6 Exponential growth model modified by Allee effects
Consider the differential equation (proposed by Dennis, 1989),

𝑑𝑥

𝑑𝑡
= 𝜆𝑥2

𝜃 + 𝑥
− 𝜇𝑥, (33)

where 𝜆, 𝜇, 𝜃 are positive real constants satisfying

0 < 𝜇 < 𝜆, 𝜃 > 0. (34)
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T A B L E 1 This table shows the relationships between the Theta-logistic, the logistics, and the Gompertz models.

In particular, it illustrates the operations needed to obtain one model from the other, in both the ODE and the DE models.

This is reparametrization equivalence of the NEDS given by A3 in Definition 1

Theta-logistic Logistic, 𝜽 = 𝟏 Gompertz, 𝜽 → 𝟎, 𝒂 = 𝒓𝜽

ODE
𝑑𝑥

𝑑𝑡
= 𝑟𝑥[1 − (𝐾−1𝑥)𝜃] 𝑑𝑥

𝑑𝑡
= 𝑟𝑥[1 −𝐾−1𝑥] 𝑑𝑥

𝑑𝑡
= −𝑎𝑥 log(𝐾−1𝑥)

Exact solution 𝑥(𝑡) =
𝑥(0)

[𝐾−1𝑥(0) + (1 −𝐾−1𝑥(0))𝑒−𝑟𝜃𝑡]
1
𝜃

𝑥(𝑡) =
𝑥(0)

𝐾−1𝑥(0) + (1 −𝐾−1𝑥(0))𝑒−𝑟𝑡

𝑥(𝑡) = 𝑥(0) ⋅ (𝐾−1𝑥(0))𝑒−𝑎𝑡−1

DE 𝑥𝑡 =
𝑥0

[𝐾−1𝑥0 + (1 −𝐾−1𝑥0)𝑒−𝑟ℎ𝜃𝑡]
1
𝜃

𝑥𝑡 =
𝑥0

𝐾−1𝑥0 + (1 −𝐾−1𝑥0)𝑒−𝑟ℎ𝑡

𝑥𝑡 = 𝑥0 ⋅ (𝐾−1𝑥0)𝑒
−𝑎ℎ𝑡−1

By linearization, we obtain
𝜆𝑥2

𝜃 + 𝑥
= 𝜆𝑥 − 𝜆𝜃

𝜃 + 𝑥
. This leads to

𝑑𝑥

𝑑𝑡
= (𝜆 − 𝜇)𝑥 − 𝜆𝜃𝑥

𝜃 + 𝑥
. (35)

We note however that this ODE cannot be solved to have exact trajectories. Applying the NEDS scheme

proposed above with 𝑔(𝑥) = 𝜆𝜃

𝜃 + 𝑥
, 𝑟 = 𝜆 − 𝜇, and 𝜙(ℎ) = 𝑒(𝜆−𝜇)ℎ−1

𝜆−𝜇 , we get the DE

𝑥𝑡+1 = 𝑓0(𝑥𝑡) =
𝑒(𝜆−𝜇)ℎ𝑥𝑡

1 + 𝑒(𝜆−𝜇)ℎ−1
𝜆−𝜇 ⋅ 𝜆𝜃

𝜃+𝑥𝑡

. (36)

The fixed points are

𝑥∗1 = 0 and 𝑥∗2 = 𝜇𝜃

𝜆 − 𝜇
.

Clearly, 𝑥∗2 = 𝜇𝜃∕(𝜆 − 𝜇) > 0 if 𝜆 > 𝜇. The RHS of equation (33) is 𝑇2. So 𝑥∗1 = 0 is asymptotically

stable since by (34)

𝑟 − 𝑔(0) = (𝜆 − 𝜇) − 𝜆 < −𝜇 < 0.

From (11), we have that 𝑥∗2 is unstable since one of the conditions in (10) fails, namely,

𝑥∗2𝑔
′(𝑥∗2) = −(𝜆 − 𝜇)𝜇

𝜆
< 0.

Although the Allee ODE model does not have an analytical solution, the NEDS model in (36) retains

excellent agreement with numerical solutions of the ODE model, see Figure 5.

5.7 The logistic model with harvesting
Consider a model for the growth and harvesting of fish population. We assume that, in the absence of

fishing, the population grows logistically, that is,

𝑑𝑥

𝑑𝑡
= 𝑟𝑥

(
1 − 𝑥

𝐾

)
, (37)



KWESSI ET AL. 15 of 22Natural Resource Modeling

F I G U R E 5 Comparison of trajectories between the exact (solid line), the Euler method (blue), the 2nd Order

Runge–Kutta method (red), and the NEDS (green), for 𝜆 = 3;𝜇 = 2; 𝜃 = 2, and for ℎ = 1

where 𝑥(𝑡) is the abundance of fish at time 𝑡, 𝐾 is the carrying capacity, and 𝑟 > 0 is the maximum

growth rate. Now suppose that we exert a constant amount of effort harvesting fish. Let 𝑞 be the fraction

of fish per effort exerted, and 𝐸 the effort exerted per unit time. Then, 𝑞𝐸𝑥 = 𝛼𝑥 is the amount of fish

harvested at time 𝑡. The model becomes

𝑑𝑥

𝑑𝑡
= 𝑟𝑥

(
1 − 𝑥

𝐾

)
− 𝛼𝑥. (38)

Applying the NEDS scheme proposed above with 𝑔(𝑥) = 𝑟

𝐾
𝑥, 𝑟 ≡ 𝑟 − 𝛼, and 𝜙(ℎ) = 𝑒(𝑟−𝛼)ℎ−1

(𝑟−𝛼) , we get

the DE

𝑥𝑡+1 = 𝑓0(𝑥𝑡) =
𝑒(𝑟−𝛼)ℎ𝑥𝑡

1 + 𝑒(𝑟−𝛼)ℎ−1
𝑟−𝛼 ⋅ 𝑟

𝐾
𝑥𝑡

. (39)

The two fixed points are 𝑥∗1 = 0 and 𝑥∗2 = 𝐾(1 − 𝛼

𝑟
). For 𝛼 > 𝑟, 𝑥∗1 is stable and for 𝛼 < 𝑟, 𝑥∗2 loses sta-

bility whereas 𝑥∗2 is stable for 𝛼 < 𝑟 and unstable for 𝛼 > 𝑟. We now show that a transcritical bifurcation

occurs 𝑟 = 𝛼, where we have exchange of stability (Figure 5). We need to show that

𝜕𝑓0(𝑥∗, 𝑟)
𝜕𝑟

||||𝑟=𝛼 = 0.

Consider

𝑢(𝑥, 𝑟) = 𝑒(𝑟−𝛼)ℎ𝑥, 𝑣(𝑥, 𝑟) = 1 + 𝑒(𝑟−𝛼)ℎ − 1
𝑟 − 𝛼

⋅
𝑟

𝐾
𝑥.



16 of 22 KWESSI ET AL.Natural Resource Modeling

We need to show that 𝑢′(𝑥∗, 𝛼)𝑣(𝑥∗, 𝛼) = 𝑢(𝑥∗, 𝛼)𝑣′(𝑥∗, 𝛼), where the prime represent the derivative

with respect to 𝑟. We have that

𝑢′(𝑥, 𝑟)𝑣(𝑥, 𝑟) = ℎ𝑒(𝑟−𝛼)ℎ𝑥

[
1 + 𝑒(𝑟−𝛼)ℎ − 1

𝑟 − 𝛼
⋅
𝑟

𝐾
𝑥

]
.

It follows that

𝑢′(𝑥∗, 𝛼)𝑣(𝑥∗, 𝛼) = ℎ𝑥∗ since
𝑥∗

𝐾
= 𝑟 − 𝛼

𝑟
.

Likewise, we have

𝑢(𝑥, 𝑟)𝑣(𝑥, 𝑟) = 𝑒(𝑟−𝛼)ℎ𝑥

[
𝑥

𝐾

(
𝑟ℎ𝑒(𝑟−𝛼)ℎ

𝑟 − 𝛼
+

𝑟
(
𝑒(𝑟−𝛼)ℎ − 1

)
(𝑟 − 𝛼)2

+ 𝑒(𝑟−𝛼)ℎ

𝑟 − 𝛼

)]
.

It follows that

𝑢(𝑥∗, 𝛼)𝑣′(𝑥∗, 𝛼) = ℎ𝑥∗.

The result follows as announced. We can easily prove that
𝜕2𝑓0(𝑥∗, 𝑟)

𝜕2𝑥
|𝑟=𝛼 ≠ 0.

5.8 Allee effect model
Consider the following model proposed by Dennis (1989).

𝑑𝑥

𝑑𝑡
= 𝑟𝑥

(
1 − 𝑥

𝐾

)
− 𝜆𝜃𝑥

𝜃 + 𝑥
. (40)

The fixed points are given by 𝑥∗1 = 0, 𝑥∗2 = 1
2 (𝐾 − 𝜃) − 1

2

√
(𝐾 − 𝜃) − 4𝜃𝐾

𝑟
(𝜆 − 𝑟), and 𝑥∗3 = 1

2 (𝐾 −

𝜃) + 1
2

√
(𝐾 − 𝜃) − 4𝜃𝐾

𝑟
(𝜆 − 𝑟).

Let 𝑟̂ = 𝑟(1 + (𝐾−𝜃)2
4𝜃𝐾 ). Then, if 𝑟 < 𝜆 < 𝑟̂, then 𝑥∗1 and 𝑥∗3 are stable, and 𝑥∗2 is unstable. Moreover,

if 𝜆 > 𝑟̂, then there is only one fixed point 𝑥∗1 = 0 which is stable. If 𝜆 = 𝑟, then 𝑥∗2 = 𝑥∗3 and we have

a saddle-node bifurcation. Finally, if 𝜆 < 𝑟, then 𝑥∗1 = 0 loses its stability and there is a positive fixed

point which is stable. Applying the NEDS with 𝑔(𝑥) = 𝑟

𝐾
+ 𝜆𝜃

𝜃 + 𝑥
, we will obtain the following dis-

crete model:

𝑥𝑡+1 =
𝑒𝑟ℎ𝑥𝑡

1 + 𝑒𝑟ℎ−1
𝐾

𝑥𝑡 +
𝑒𝑟ℎ−1

𝑟

𝜆𝜃

(𝜃+𝑥𝑡)

. (41)

The fixed points are exactly the same as in the ODE and the stability conditions are the same. We note

however that the DE model in (41) is equivalent to the following model obtained by Elaydi and Sacker

(2010):

𝑥𝑡+1 =
𝛼𝑥2

𝑡
+ 𝛽𝑥𝑡

𝑎 + 𝑏𝑥𝑡 + 𝑐𝑥2
𝑡

, (42)

with 𝛼 = 𝑟𝐾𝜃𝑒𝑟ℎ, 𝛽 = 𝑟𝐾𝑒𝑟ℎ, 𝑎 = 𝑟𝐾𝜃 + 𝜆𝜃(𝑒𝑟ℎ − 1)𝐾, 𝑟𝐾 + 𝜃𝑟(𝑒𝑟ℎ − 1), and 𝑐 = 𝑟(𝑒𝑟ℎ − 1). Figure

6 shows the Bifurcation diagram of the Allee effect model.
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F I G U R E 6 Bifurcation diagrams for the logistic model with harvesting. We fixed ℎ = 0.5, 𝐾 = 6. We observe a

transcritical bifurcation occurring for 𝑟 = 𝛼 = 2.2. The green curve represents the stable manifold whereas the red dashed

curve represents the unstable manifold

r r̂

x

λ

Stable

Unstable

F I G U R E 7 This graph represents the bifurcation diagram 𝜆 − 𝑥∗. We see that for (a) 𝜆 > 𝑟, then 𝑥∗1 = 0 is stable,

(b) 𝑟 < 𝜆 < 𝑟̂, 𝑥∗1 = 0 is stable, 𝑥∗2 is unstable, and 𝑥∗3 is stable, (c) 𝜆 < 𝑟, 𝑥∗1 = 0 is unstable, 𝑥∗3 is stable and we have a

backward bifurcation

5.9 The spruce budworm model
This model was proposed by Ludwig, Jones, and Hollins (1978) for the outbreak of the spruce budworm

pest. Consider the differential equation

𝑑𝑥

𝑑𝑡
= 𝑟𝑥

(
1 − 𝑥

𝐾

)
− 𝑥2

1 + 𝑥2
, (43)

where 𝑥(𝑡) represents the population size at time 𝑡, 𝑟 is the growth rate, and 𝐾 is the carrying capacity.

Applying NEDS with 𝜙(ℎ) = 𝑒𝑟ℎ−1
𝑟

and 𝑔(𝑥) = 𝑟

𝐾
𝑥 + 𝑥

1 + 𝑥2
, we obtain the DE

𝑥𝑡+1 = 𝑓0(𝑥𝑡) =
𝑒𝑟ℎ𝑥𝑡

1 + 𝑒𝑟ℎ−1
𝑟

[
𝑟

𝐾
𝑥𝑡 +

𝑥𝑡

1+𝑥2
𝑡

] . (44)

Again, 𝑥∗ = 0 is a fixed point. To find the other fixed points, we solve the equation 𝑔(𝑥) = 𝑟, that is,

𝑟(1 − 𝑥

𝐾
) − 𝑥

1 + 𝑥2
= 0, which is a third-degree polynomial, see Figure 7 below. This can be done by
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Equilibria for the Spruce budworm model

y

xa b c

F I G U R E 8 Equilibrium points of the Spruce budworm model for r = 0.601 and K = 6.1

intersecting the line 𝑦 = 𝑟(1 − 𝑥

𝐾
) with the curve 𝑦 = 𝑥

1 + 𝑥2
, see Figure8. Then, we have

𝑑

𝑑𝑥

[
𝑟

(
1 − 𝑥

𝐾

)]||||𝑥∗ = 𝑑

𝑑𝑥

[
𝑥

1 + 𝑥2

]|||||𝑥∗ , (45)

where

𝑟

(
1 − 𝑥∗

𝐾

)
= 𝑥∗

1 + 𝑥∗2
.

This gives

⎧⎪⎨⎪⎩
𝑟 = 2𝑥3

(1 + 𝑥2)2

𝐾 = 2𝑥3

𝑥2 − 1

. (46)

Now we show that there is a saddle-node bifurcation at 𝜇∗ = 𝑟.

First, we show that

𝜕𝑓0
𝜕𝑥

(𝑥∗, 𝑟) = 1.

Consider

𝑣(𝑥, 𝑟) = 1 + 𝑒𝑟ℎ − 1
𝑟

[
𝑟

𝐾
𝑥 + 𝑥

1 + 𝑥2

]
𝑢(𝑥, 𝑟) = 𝑒𝑟ℎ𝑥.



KWESSI ET AL. 19 of 22Natural Resource Modeling

h= 1 

t
0 1 2 3 4 5 6 7 8 9 10

0
1

2
3

4
5

6 xt Euler
2nd Order Runge-Kutta
NEDS

F I G U R E 9 Comparison of trajectories between the exact (solid line), the Euler method (blue), the 2nd Order

Runge-Kutta method (red), and the NEDS (green), for r = 0.601, K = 6, and for h = 1
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r=0.615
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F I G U R E 1 0 This figure represents the bifurcation diagrams for the spruce budworm model using the Euler,

the second-order Runge–Kutta, and the NEDS method. We fixed ℎ = 1 and 𝐾 = 6 and we can notice a saddle node

bifurcation occurring for 𝑟 ≈ 0.615. The green dots represent the stable manifold. We note also that the Euler and second-

order Runge–Kutta methods have a chaotic behavior for values of 𝑟 > 2.3, whereas the NEDS has no chaos for the same

values, similar to the original ODE. Also, for the Euler method, chaos occurs much earlier than for the Runge–Kutta

method

We have that
𝜕𝑢(𝑥,𝑟)
𝜕𝑥

= 𝑒𝑟ℎ and that

𝜕𝑣(𝑥, 𝑟)
𝜕𝑥

= 𝑒𝑟ℎ − 1
𝑟

[ 𝑟
𝐾

+ 1 − 𝑥2

(1 + 𝑥2)2
].

It follows that

𝜕𝑣(𝑥∗, 𝑟)
𝜕𝑥

= 𝑒𝑟ℎ − 1
𝑟

[
𝑟

𝐾
+ 1 − 𝑥∗2

(1 + 𝑥∗2)2

]
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= 𝑒𝑟ℎ − 1
𝑟

[
𝑟

𝐾
+ 1 − 𝑥∗2

(1 + 𝑥∗2)2

]

= 𝑒𝑟ℎ − 1
𝑟

[
𝑑

𝑑𝑥

[
𝑟

(
1 − 𝑥

𝐾

)
− 𝑥

1 + 𝑥2

]|||||𝑥=𝑥∗
]

= 0 in light of equation (45).

Also, we note that 𝑣(𝑥∗, 𝑟) = 𝑒𝑟ℎ. It follows that

𝜕𝑓0
𝜕𝑥

(𝑥∗, 𝑟) =
𝜕𝑢(𝑥∗,𝑟)

𝜕𝑥
𝑣(𝑥∗, 𝑟) − 𝑢(𝑥∗, 𝑟) 𝜕𝑣(𝑥

∗,𝑟)
𝜕𝑥

𝑣(𝑥∗, 𝑟)2

= 𝑒2𝑟ℎ

𝑒2𝑟ℎ
= 1.

Now we show that

𝜕𝑓0(𝑥∗, 𝑟)
𝜕𝑟

≠ 0.

We note that

𝜕𝑣(𝑥∗, 𝑟)
𝜕𝑟

= ℎ𝑒𝑟ℎ

𝑟

(
𝑟

𝐾
𝑥∗ + 𝑥∗

1 + 𝑥∗2

)
− 𝑒𝑟ℎ − 1

𝑟2
𝑥∗

1 + 𝑥∗2
= ℎ𝑒𝑟ℎ − 𝑒𝑟ℎ − 1

𝑟2
𝑥∗

1 + 𝑥∗2
.

Also

𝜕𝑢(𝑥∗, 𝑟)
𝜕𝑟

= ℎ𝑥∗𝑒𝑟ℎ.

It follows that

𝜕𝑓0
𝜕𝑟

(𝑥∗, 𝑟) =
𝜕𝑢(𝑥∗,𝑟)

𝜕𝑟
𝑣(𝑥∗, 𝑟) − 𝑢(𝑥∗, 𝑟) 𝜕𝑣(𝑥

∗,𝑟)
𝜕𝑟

𝑣(𝑥∗, 𝑟)2

=
ℎ𝑒2𝑟ℎ𝑥∗ − 𝑥∗𝑒𝑟ℎ

[
ℎ𝑒𝑟ℎ − 𝑒𝑟ℎ−1

𝑟2
𝑥∗

1+𝑥∗2

]
𝑒2𝑟ℎ

= 𝑥∗

1 + 𝑥∗2
⋅
𝑒−𝑟ℎ − 𝑒−2𝑟ℎ

𝑟2
≠ 0.

We finish by showing that

𝜕2𝑓0(𝑥∗, 𝑟)
𝜕𝑥2

≠ 0.

To simplify the notation, let 𝑢′(𝑥) = 𝜕𝑢(𝑥,𝑟)
𝜕𝑥

and 𝑣′(𝑥) = 𝜕𝑣(𝑥,𝑟)
𝜕𝑥

.

We have that

𝜕2𝑓0(𝑥, 𝑟)
𝜕𝑥2

= 𝜕

𝜕𝑥

[
𝑢′(𝑥)
𝑣(𝑥)

− 𝑢(𝑥)𝑣′(𝑥)
𝑣(𝑥)2

]
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= 𝑢′′(𝑥)𝑣(𝑥) − 𝑢′(𝑥)𝑣′(𝑥)
𝑣(𝑥)2

−
[
𝑢(𝑥)𝑣′′(𝑥) − 𝑢′(𝑥)𝑣′(𝑥)

]
𝑣(𝑥)2 − 2𝑢(𝑥)𝑣(𝑥)𝑣′(𝑥)2

𝑣(𝑥)4
.

We note however that

𝑣(𝑥∗) = 𝜕𝑣(𝑥∗, 𝑟)
𝜕𝑥

= 0 and 𝑢′′(𝑥∗) = 0.

Thus, it follows that

𝜕2𝑓0(𝑥∗, 𝑟)
𝜕𝑥2

= 𝑣′′(𝑥∗)𝑢(𝑥∗)
𝑣(𝑥∗)2

= 2𝑥∗2

(1 + 𝑥∗2)3
⋅
𝑒−𝑟ℎ − 1

𝑟
≠ 0.

Trajectories of the NEDS version (44) follow the numerical solution trajectories of the original spruce

budworm ODE (Figure 9).

6 CONCLUSION

Ecology textbooks, including those focused on mathematical modeling and theoretical issues, are

replete with population models in the form of ODEs. While models featuring detailed simulations

of individuals in space and time are helping ecologists gain insights into particular systems, the ODE

legacies of Pearl, Lotka, Volterra, MacArthur, and others will continue to be strong as long as ecologists

search for general patterns that apply across many systems. However, discretization of ODE models

is usually necessary for their application as descriptors of real systems. First, populations are often

intrinsically discrete, with seasonal breeding pulses and survival bottlenecks being common forces of

change. Second, some sort of model discretization is usually required in order to connect model and

time series observations of population abundances for purposes of statistical inferences. We have here

proposed a method of discretizing single species population models that are formulated as ODEs. The

method, coined NEDS, preserves the dynamics of the ODE and maintains nearly exactly the trajecto-

ries of the ODE. Moreover, it allows for large time steps without an alteration in the dynamics of the

system. Large time steps are important especially when they represent a generation time or complies

with the time period of some empirical measurements. NEDS should likely prove useful in ecology for

helping mathematical models become more useful as scientific hypotheses.
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